Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative Propagation of Chaos for Singular Interacting Particle Systems Driven by Fractional Brownian Motion (2403.05454v1)

Published 8 Mar 2024 in math.PR and math.AP

Abstract: We consider interacting systems particle driven by i.i.d. fractional Brownian motions, subject to irregular, possibly distributional, pairwise interactions. We show propagation of chaos and mean field convergence to the law of the associated McKean--Vlasov equation, as the number of particles $N\to\infty$, with quantitative sharp rates of order $N{-1/2}$. Our results hold for a wide class of possibly time-dependent interactions, which are only assumed to satisfy a Besov-type regularity, related to the Hurst parameter $H\in (0,+\infty)\setminus \mathbb{N}$ of the driving noises. In particular, as $H$ decreases to $0$, interaction kernels of arbitrary singularity can be considered, a phenomenon frequently observed in regularization by noise results. Our proofs rely on a combinations of Sznitman's direct comparison argument with stochastic sewing techniques.

Citations (1)

Summary

We haven't generated a summary for this paper yet.