Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions (2105.02983v2)

Published 6 May 2021 in math.PR

Abstract: This paper develops a non-asymptotic, local approach to quantitative propagation of chaos for a wide class of mean field diffusive dynamics. For a system of $n$ interacting particles, the relative entropy between the marginal law of $k$ particles and its limiting product measure is shown to be $O((k/n)2)$ at each time, as long as the same is true at time zero. A simple Gaussian example shows that this rate is optimal. The main assumption is that the limiting measure obeys a certain functional inequality, which is shown to encompass many potentially irregular but not too singular finite-range interactions, as well as some infinite-range interactions. This unifies the previously disparate cases of Lipschitz versus bounded measurable interactions, improving the best prior bounds of $O(k/n)$ which were deduced from global estimates involving all $n$ particles. We also cover a class of models for which qualitative propagation of chaos and even well-posedness of the McKean-Vlasov equation were previously unknown. At the center of a new approach is a differential inequality, derived from a form of the BBGKY hierarchy, which bounds the $k$-particle entropy in terms of the $(k+1)$-particle entropy.

Summary

We haven't generated a summary for this paper yet.