Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the singular value decomposition of idempotent and involutory matrices (2403.05214v1)

Published 8 Mar 2024 in math.NA and cs.NA

Abstract: It is known that singular values of idempotent matrices are either zero or larger or equal to one \cite{HouC63}. We state exactly how many singular values greater than one, equal to one, and equal to zero there are. Moreover, we derive a singular value decomposition of idempotent matrices which reveals a tight relationship between its left and right singular vectors. The same idea is used to augment a discovery regarding the singular values of involutory matrices as presented in \cite{FasH20}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. Signal processing applications of oblique projection operators. IEEE Transactions on Signal Processing, 42(6):1413–1424, 1994.
  2. H. Faßbender and M. Halwaß. On the singular value decomposition of (skew-)involutory and (skew-)coninvolutory matrices. Special Matrices, 8:1–13, 2020.
  3. A. Galántai. Subspaces, angles and pairs of orthogonal projections. Linear and Multilinear Algebra, 56(3):227–260, 2008.
  4. Matrix computations. Baltimore, MD: The Johns Hopkins University Press, 4th ed. edition, 2013.
  5. Matrix analysis. Cambridge: Cambridge University Press, 2nd ed. edition, 2013.
  6. The singular values of involutory and of idempotent matrices. Numerische Mathematik, 5:234–237, 1963.
  7. Kh. D. Ikramov. A canonical form for projectors under unitary similarity. Computational Mathematics and Mathematical Physics, 36(3):279–281, 1996.
  8. A. Kiełbasiński and H. Schwetlick. Numerische lineare Algebra. Eine computerorientierte Einführung. Berlin (GDR): VEB Deutscher Verlag der Wissenschaften, 1988.
  9. Solving least squares problems. Englewood Cliffs, NJ: Prentice-Hall, 1974.
  10. D. Ž. Đoković. Unitary similarity of projectors. Aequationes Mathematicae, 42(2-3):220–224, 1991.

Summary

We haven't generated a summary for this paper yet.