Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A design methodology for nonlinear oscillator chains enabling energy localization tuning and soliton stability enhancement with optimal damping (2403.05176v1)

Published 8 Mar 2024 in nlin.PS

Abstract: In this paper, the vibration energy localization in coupled nonlinear oscillators is investigated, based on the creation of standing solitons. The main objective is to establish a design methodology for mechanical lattices using the Nonlinear Schr\"odinger Equation (NLSE) as a guide strategy, even in the presence of damping. A three-dimensional diagram is used to illustrate stable parameter regions for damped stationary solitons. Moreover, an analysis of the influence of the number of oscillators in the system, and a numerical investigation regarding the stability of solitonic behavior is done. Through numerical analyses, it is observed that the developed algorithm not only has the capability to locate the highest amplitudes in the chain of oscillators, but also to control the intensity at which these amplitudes are located according to design requirements. The outcomes of the proposed methodology elucidate the impact that the coupling stiffness has on the stabilization of the NLSE, as well as the influence of the number of oscillators on the continuity hypothesis. The developed algorithm holds potential for practical applications in mechanical engineering since the NLSE is used as a design line rather than as a consequence of the phenomenon description.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. doi:10.1103/PhysRevLett.68.2730.
  2. doi:10.1016/S0167-2789(01)00378-5.
  3. doi:10.1016/j.physleta.2012.04.058.
  4. doi:10.1103/PhysRevResearch.4.023211.
  5. doi:10.1016/j.ymssp.2022.109623.
  6. doi:10.1016/j.ymssp.2021.108299.
  7. doi:10.1016/j.ymssp.2020.107560.
  8. doi:10.1088/1361-665X/ab05f8.
  9. doi:10.1109/JMEMS.2019.2894953.
  10. doi:10.1016/j.ijnonlinmec.2021.103903.
  11. doi:10.1063/1.2899634.
  12. doi:10.1109/JSEN.2018.2889646.
  13. doi:10.1016/j.physd.2019.132229.
  14. doi:10.1103/PhysRevE.80.046202.
  15. doi:10.1016/j.ymssp.2016.02.062.
  16. doi:10.1016/j.jsv.2017.08.004.
  17. doi:10.1016/j.ijnonlinmec.2017.01.018.
  18. doi:10.1016/j.cnsns.2016.05.012.
  19. doi:10.1016/j.ymssp.2018.08.011.
  20. doi:10.1016/j.ijnonlinmec.2021.103812.
  21. doi:10.1016/j.matpr.2022.03.213.
  22. doi:10.1080/17455030.2020.1856970.
  23. doi:10.1007/s11082-022-04252-z.
  24. doi:https://doi.org/10.1016/j.ymssp.2023.110879. URL https://www.sciencedirect.com/science/article/pii/S0888327023007872
  25. doi:10.1103/PhysRevE.54.5707.
  26. doi:10.1063/1.4913256.
  27. doi:10.1016/j.physd.2009.11.007.
  28. doi:10.1103/RevModPhys.78.137.
  29. doi:10.1016/j.physd.2005.12.002.
  30. doi:10.1140/epjb/e2002-00301-0.
  31. doi:10.1016/S0167-2789(98)00079-7.
  32. doi:10.1103/PhysRevA.78.013616.
  33. doi:10.1016/j.chaos.2022.113026.
  34. doi:10.1063/1.2957286.
  35. doi:10.1103/PhysRevLett.107.234101.
  36. doi:10.1103/PhysRevE.64.056606.
  37. doi:10.1103/PhysRevLett.108.133902.
  38. doi:10.1016/S0167-2789(02)00503-1.
  39. doi:10.1007/s00332-023-09904-2.
  40. doi:10.1103/PhysRevE.83.026605.
  41. doi:10.1063/1.4872252.
  42. doi:10.1103/PhysRevE.66.015601.
  43. doi:10.1103/PhysRevE.90.043203.
  44. doi:10.1088/0022-3727/41/1/015503.
  45. doi:10.1115/1.4023866n.
  46. doi:10.1007/s40435-014-0139-9.
  47. doi:10.1115/1.4030215.
  48. doi:10.1007/s11071-019-05020-7.
  49. doi:10.1109/TMAG.2021.3086886.
  50. doi:JohnWiley&Sons.
  51. doi:10.1098/rspa.1978.0110.
  52. doi:10.48550/arXiv.1107.0483.
  53. doi:10.1587/nolta.3.233.
  54. doi:10.1063/1.3216054.
  55. doi:10.1016/S0167-2789(01)00239-1.
  56. doi:10.1103/PhysRevE.68.056605.
  57. doi:10.1209/epl/i2005-10550-y.
  58. doi:SpringerBerlinHeidelbergNewYork.
  59. doi:10.1007/s11071-017-3384-6.
  60. doi:10.1023/A:1022332200092.
  61. doi:10.1007/s006070170013.
  62. doi:10.1080/00207160701870878.
  63. doi:10.1016/j.camwa.2009.12.025.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube