Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete hypocoercivity for a nonlinear kinetic reaction model (2403.04699v1)

Published 7 Mar 2024 in math.NA and cs.NA

Abstract: In this article, we propose a finite volume discretization of a one dimensional nonlinear reaction kinetic model proposed in [Neumann, Schmeiser, Kint. Rel. Mod. 2016], which describes a 2-species recombination-generation process. Specifically, we establish the long-time convergence of approximate solutions towards equilibrium, at exponential rate. The study is based on an adaptation for a discretization of the linearized problem of the $L2$ hypocoercivity method introduced in [Dolbeault, Mouhot, Schmeiser, 2015]. From this, we can deduce a local result for the discrete nonlinear problem. As in the continuous framework, this result requires the establishment of a maximum principle, which necessitates the use of monotone numerical fluxes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system. J. Stat. Phys. 184, 1 (2021), Paper No. 4, 34.
  2. On a structure-preserving numerical method for fractional Fokker-Planck equations. Math. Comput. 92, 340 (2023), 635–693.
  3. Boundary layers and homogenization of transport processes. Publications of the RIMS 15, 1 (1979), 53–157.
  4. A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34, 5 (2012), B559–B583.
  5. Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations. Math. Comput. 89, 323 (2020), 1093–1133.
  6. A structure and asymptotic preserving scheme for the Vlasov-Poisson-Fokker-Planck model. J. Comput. Phys. 498 (2024), 112693.
  7. On a discrete framework of hypocoercivity for kinetic equations. Math. Comput. 93, 345 (2024), 163–202.
  8. Fractional Hypocoercivity. Commun. Math. Phys. 390 (2022), 1369 – 1411.
  9. Hypocoercivity without confinement. Pure Appl. Anal. 2, 2 (2020), 203–232.
  10. L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states. Preprint arXiv:2304.12040, 2023.
  11. A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Mod. 3(1), 1 (2010), 59–83.
  12. Confinement by biased velocity jumps: Aggregation of escherichia coli. Kinet. Relat. Mod. 8, 4 (2015), 651–666.
  13. Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model. IMA J. Numer. Anal. 27, 4 (02 2007), 689–716.
  14. Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations. IMA J. Numer. Anal. 40, 4 (Oct. 2020), 2473–2505.
  15. Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 149 (1980), 1–21.
  16. Macroscopic models for ionization in the presence of strong electric fields. Transport Theory Statist. Phys. 29, 3-5 (2000), 551–561.
  17. Trajectorial hypocoercivity and application to control theory. Preprint arXiv:2210.13893, 2022.
  18. Hypocoercivity for linear kinetic equations conserving mass. Trans. Amer. Math. Soc. 367, 6 (2015), 3807–3828.
  19. A hypocoercivity-exploiting stabilised finite element method for Kolmogorov equation. Preprint arXiv:2401.12921, 2024.
  20. Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker- Planck equations. Numer. Math. 144 (2018).
  21. A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure. Numer. Math. (2017).
  22. On steady-state preserving spectral methods for homogeneous Boltzmann equations. C. R. Acad. Sci. Paris, Ser. I 353, 4 (2015), 309–314.
  23. Georgoulis, E. H. Hypocoercivity-compatible Finite Element Methods for the Long-time Computation of Kolmogorov’s Equation. SIAM J. Numer. Anal. 59 (2018), 173–194.
  24. Identification of Asymptotic Decay to Self-Similarity for One-Dimensional Filtration Equations. SIAM J. Numer. Anal. 43, 6 (2006), 2590–2606.
  25. Hérau, F. Introduction to hypocoercive methods and applications for simple linear inhomogeneous kinetic models. In Lectures on the Analysis of Nonlinear Partial Differential Equations , no. MLM 5 in Morning Side Lectures in Mathematics Series. International Press, 2017, pp. 119–147.
  26. Isotropic hypoellipticity and trend to the equilibrium for the Fokker- Planck equation with high degree potential. Arch. Rational Mech. Anal. 171, 2 (2004), 151–218.
  27. Hörmander, L. Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147–171.
  28. A kinetic reaction model: decay to equilibrium and macroscopic limit. Kinet. Relat. Models 9, 3 (2016), 571–585.
  29. Residual equilibrium schemes for time dependent partial differential equations. Comput. Fluids 156 (2017), 329–342.
  30. Numerical hypocoercivity for the Kolmogorov equation. Math. Comput. 86 (2017), 97–119.
  31. Temam, R. Navier-Stokes equations. Theory and numerical analysis. 3rd (rev.) ed, vol. 2 of Stud. Math. Appl. Elsevier, Amsterdam, 1984.
  32. Villani, C. Hypocoercivity. Mem. Amer. Math. Soc. (Sept. 2009).

Summary

We haven't generated a summary for this paper yet.