Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations (1812.05967v2)

Published 14 Dec 2018 in math.NA and cs.NA

Abstract: In this article, we are interested in the asymptotic analysis of a finite volume scheme for one dimensional linear kinetic equations, with either Fokker-Planck or linearized BGK collision operator. Thanks to appropriate uniform estimates, we establish that the proposed scheme is Asymptotic-Preserving in the diffusive limit. Moreover, we adapt to the discrete framework the hypocoercivity method proposed by [J. Dolbeault, C. Mouhot and C. Schmeiser, Trans. Amer. Math. Soc., 367, 6 (2015)] to prove the exponential return to equilibrium of the approximate solution. We obtain decay rates that are bounded uniformly in the diffusive limit. Finally, we present an efficient implementation of the proposed numerical schemes, and perform numerous numerical simulations assessing their accuracy and efficiency in capturing the correct asymptotic behaviors of the models.

Citations (27)

Summary

We haven't generated a summary for this paper yet.