Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Structural disorder-induced topological phase transitions in quasicrystals (2403.04338v1)

Published 7 Mar 2024 in cond-mat.mes-hall

Abstract: Recently, the structural disorder-induced topological phase transitions in periodic systems have attracted much attention. However, in aperiodic systems such as quasicrystalline systems, the interplay between structural disorder and band topology is still unclear. In this work, we investigate the effects of structural disorder on a quantum spin Hall insulator phase and a higher-order topological phase in a two-dimensional Amman-Beenker tiling quasicrystalline lattice, respectively. We demonstrate that the structural disorder can induce a topological phase transition from a quasicrystalline normal insulator phase to an amorphous quantum spin Hall insulator phase, which is confirmed by bulk gap closing and reopening, robust edge states, quantized spin Bott index and conductance. Furthermore, the structural disorder-induced higher-order topological phase transition from a quasicrystalline normal insulator phase to an amorphous higher-order topological phase characterized by quantized quadrupole moment and topological corner states is also found. More strikingly, the disorder-induced higher-order topological insulator with eight corner states represents a distinctive topological state that eludes realization in conventional crystalline systems. Our work extends the study of the interplay between disorder effects and topologies to quasicrystalline and amorphous systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (84)
  1. M. Kastner, “Phase transitions and configuration space topology”, Rev. Mod. Phys. 80, 167 (2008).
  2. A. Bansil, H. Lin,  and T. Das, “Colloquium: Topological band theory”, Rev. Mod. Phys. 88, 021004 (2016).
  3. M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators”, Rev. Mod. Phys. 82, 3045 (2010).
  4. X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors”, Rev. Mod. Phys. 83, 1057 (2011).
  5. S. Longhi, “Topological Phase Transition in non-Hermitian Quasicrystals”, Phys. Rev. Lett. 122, 237601 (2019).
  6. S. Rufo, N. Lopes, M. A. Continentino,  and M. A. R. Griffith, “Multicritical behavior in topological phase transitions”, Phys. Rev. B 100, 195432 (2019).
  7. J. Li, R.-L. Chu, J. K. Jain,  and S.-Q. Shen, “Topological Anderson Insulator”, Phys. Rev. Lett. 102, 136806 (2009).
  8. C. W. Groth, M. Wimmer, A. R. Akhmerov, J. Tworzydło,  and C. W. J. Beenakker, “Theory of the Topological Anderson Insulator”, Phys. Rev. Lett. 103, 196805 (2009).
  9. E. Prodan, T. L. Hughes,  and B. A. Bernevig, “Entanglement Spectrum of a Disordered Topological Chern Insulator”, Phys. Rev. Lett. 105, 115501 (2010).
  10. E. V. Castro, M. P. López-Sancho,  and M. A. H. Vozmediano, “Anderson localization and topological transition in chern insulators”, Phys. Rev. B 92, 085410 (2015).
  11. Y. Kuno, “Disorder-induced chern insulator in the harper-hofstadter-hatsugai model”, Phys. Rev. B 100, 054108 (2019).
  12. R. Chen, D.-H. Xu,  and B. Zhou, “Disorder-induced topological phase transitions on lieb lattices”, Phys. Rev. B 96, 205304 (2017a).
  13. H.-M. Guo, G. Rosenberg, G. Refael,  and M. Franz, “Topological Anderson Insulator in Three Dimensions”, Phys. Rev. Lett. 105, 216601 (2010).
  14. I. Mondragon-Shem, T. L. Hughes, J. Song,  and E. Prodan, “Topological Criticality in the Chiral-Symmetric AIII Class at Strong Disorder”, Phys. Rev. Lett. 113, 046802 (2014).
  15. C.-Z. Chen, J. Song, H. Jiang, Q.-f. Sun, Z. Wang,  and X. C. Xie, “Disorder and Metal-Insulator Transitions in Weyl Semimetals”, Phys. Rev. Lett. 115, 246603 (2015).
  16. R. Chen, D.-H. Xu,  and B. Zhou, “Topological anderson insulator phase in a dirac-semimetal thin film”, Phys. Rev. B 95, 245305 (2017b).
  17. R. Chen, C.-Z. Chen, J.-H. Sun, B. Zhou,  and D.-H. Xu, “Phase diagrams of weyl semimetals with competing intraorbital and interorbital disorders”, Phys. Rev. B 97, 235109 (2018a).
  18. R. Chen, D.-H. Xu,  and B. Zhou, “Floquet topological insulator phase in a weyl semimetal thin film with disorder”, Phys. Rev. B 98, 235159 (2018b).
  19. P. V. Sriluckshmy, K. Saha,  and R. Moessner, “Interplay between topology and disorder in a two-dimensional semi-dirac material”, Phys. Rev. B 97, 024204 (2018).
  20. J. Borchmann, A. Farrell,  and T. Pereg-Barnea, “Anderson topological superconductor”, Phys. Rev. B 93, 125133 (2016).
  21. W. Qin, D. Xiao, K. Chang, S.-Q. Shen,  and Z. Zhang, “Disorder-induced topological phase transitions in two-dimensional spin-orbit coupled superconductors”, Sci. Rep. 6, 1 (2016).
  22. S. Lieu, D. K. K. Lee,  and J. Knolle, “Disorder protected and induced local zero-modes in longer-range kitaev chains”, Phys. Rev. B 98, 134507 (2018).
  23. C.-B. Hua, R. Chen, D.-H. Xu,  and B. Zhou, “Disorder-induced majorana zero modes in a dimerized kitaev superconductor chain”, Phys. Rev. B 100, 205302 (2019).
  24. L.-Z. Tang, L.-F. Zhang, G.-Q. Zhang,  and D.-W. Zhang, “Topological anderson insulators in two-dimensional non-hermitian disordered systems”, Phys. Rev. A 101, 063612 (2020).
  25. C.-A. Li, B. Fu, Z.-A. Hu, J. Li,  and S.-Q. Shen, “Topological Phase Transitions in Disordered Electric Quadrupole Insulators”, Phys. Rev. Lett. 125, 166801 (2020).
  26. T. Peng, C.-B. Hua, R. Chen, Z.-R. Liu, D.-H. Xu,  and B. Zhou, “Higher-order topological Anderson insulators in quasicrystals”, Phys. Rev. B 104, 245302 (2021a).
  27. Y.-B. Yang, J.-H. Wang, K. Li,  and Y. Xu, “Higher-order topological phases in crystalline and non-crystalline systems: a review”, arXiv:2309.03688 .
  28. E. J. Meier, F. A. An, A. Dauphin, M. Maffei, P. Massignan, T. L. Hughes,  and B. Gadway, “Observation of the topological anderson insulator in disordered atomic wires”, Science 362, 929 (2018).
  29. S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. Rechtsman,  and A. Szameit, “Photonic topological anderson insulators”, Nature London 560, 461 (2018).
  30. G.-G. Liu, Y. Yang, X. Ren, H. Xue, X. Lin, Y.-H. Hu, et al., “Topological Anderson Insulator in Disordered Photonic Crystals”, Phys. Rev. Lett. 125, 133603 (2020).
  31. X. Cui, R.-Y. Zhang, Z.-Q. Zhang,  and C. T. Chan, “Photonic ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Topological Anderson Insulators”, Phys. Rev. Lett. 129, 043902 (2022).
  32. F. Zangeneh-Nejad and R. Fleury, “Disorder-induced signal filtering with topological metamaterials”, Adv. Mater. 32, 2001034 (2020).
  33. W. Zhang, D. Zou, Q. Pei, W. He, J. Bao, H. Sun,  and X. Zhang, “Experimental Observation of Higher-Order Topological Anderson Insulators”, Phys. Rev. Lett. 126, 146802 (2021).
  34. K. Li, J.-H. Wang, Y.-B. Yang,  and Y. Xu, “Symmetry-Protected Topological Phases in a Rydberg Glass”, Phys. Rev. Lett. 127, 263004 (2021).
  35. J.-H. Wang, Y.-B. Yang, N. Dai,  and Y. Xu, “Structural-Disorder-Induced Second-Order Topological Insulators in Three Dimensions”, Phys. Rev. Lett. 126, 206404 (2021).
  36. C. Wang, T. Cheng, Z. Liu, F. Liu,  and H. Huang, “Structural Amorphization-Induced Topological Order”, Phys. Rev. Lett. 128, 056401 (2022a).
  37. R. Zallen, The physics of amorphous solids (John Wiley & Sons, New York, 2008).
  38. M. H. Cohen and D. Turnbull, “Metastability of amorphous structures”, Nature (London) 203, 964 (1964).
  39. P. Duwez, R. H. Willens,  and J. Klement, W., “Continuous Series of Metastable Solid Solutions in Silver‐Copper Alloys”, J. Appl. Phys. 31, 1136 (2004).
  40. H. Jones, “The status of rapid solidification of alloys in research and application”, J. Mater. Sci. 19, 1043 (1984).
  41. A. Inoue, K. Ohtera,  and T. Masumoto, “New amorphous al-y, al-la and al-ce alloys prepared by melt spinning”, Jnp. J. Appl. Phys. 27, L736 (1988).
  42. H. Chen and D. Turnbull, “Formation and stability of amorphous alloys of au-ge-si”, Acta Meter. 18, 261 (1970).
  43. L. Schultz, “Formation of amorphous metals by mechanical alloying”, Mater. Sci. Eng. 97, 15 (1988).
  44. D. B. Graves, “Plasma processing”, IEEE Trans. Plasma Sci. 22, 31 (1994).
  45. C.-T. Toh, H. Zhang, J. Lin, A. S. Mayorov, Y.-P. Wang, C. M. Orofeo, et al., “Synthesis and properties of free-standing monolayer amorphous carbon”, Nature (London) 577, 199 (2020).
  46. C. Wang, F. Liu,  and H. Huang, “Effective Model for Fractional Topological Corner Modes in Quasicrystals”, Phys. Rev. Lett. 129, 056403 (2022b).
  47. R. Chen, C.-Z. Chen, J.-H. Gao, B. Zhou,  and D.-H. Xu, “Higher-Order Topological Insulators in Quasicrystals”, Phys. Rev. Lett. 124, 036803 (2020).
  48. C.-B. Hua, R. Chen, B. Zhou,  and D.-H. Xu, “Higher-order topological insulator in a dodecagonal quasicrystal”, Phys. Rev. B 102, 241102(R) (2020).
  49. R. Chen, D.-H. Xu,  and B. Zhou, “Topological anderson insulator phase in a quasicrystal lattice”, Phys. Rev. B 100, 115311 (2019).
  50. L.-Z. Tang, S.-N. Liu, G.-Q. Zhang,  and D.-W. Zhang, “Topological anderson insulators with different bulk states in quasiperiodic chains”, Phys. Rev. A 105, 063327 (2022).
  51. Y.-P. Wu, L.-Z. Tang, G.-Q. Zhang,  and D.-W. Zhang, “Quantized topological anderson-thouless pump”, Phys. Rev. A 106, L051301 (2022).
  52. T. Peng, C.-B. Hua, R. Chen, D.-H. Xu,  and B. Zhou, “Topological anderson insulators in an ammann-beenker quasicrystal and a snub-square crystal”, Phys. Rev. B 103, 085307 (2021b).
  53. C.-B. Hua, Z.-R. Liu, T. Peng, R. Chen, D.-H. Xu,  and B. Zhou, “Disorder-induced chiral and helical majorana edge modes in a two-dimensional ammann-beenker quasicrystal”, Phys. Rev. B 104, 155304 (2021).
  54. V. Regis, V. Velasco, M. B. Silva Neto,  and C. Lewenkopf, “Structure-driven phase transitions in paracrystalline topological insulators”, arXiv:2312.08779 .
  55. H. Huang and F. Liu, “Quantum Spin Hall Effect and Spin Bott Index in a Quasicrystal Lattice”, Phys. Rev. Lett. 121, 126401 (2018a).
  56. H. Huang and F. Liu, “Theory of spin bott index for quantum spin hall states in nonperiodic systems”, Phys. Rev. B 98, 125130 (2018b).
  57. R. Landauer, “Electrical resistance of disordered one-dimensional lattices”, Philos. Mag 21, 863 (1970).
  58. M. Büttiker, “Absence of backscattering in the quantum hall effect in multiprobe conductors”, Phys. Rev. B 38, 9375 (1988).
  59. D. S. Fisher and P. A. Lee, “Relation between conductivity and transmission matrix”, Phys. Rev. B 23, 6851 (1981).
  60. W. A. Wheeler, L. K. Wagner,  and T. L. Hughes, “Many-body electric multipole operators in extended systems”, Phys. Rev. B 100, 245135 (2019).
  61. C.-A. Li and S.-S. Wu, “Topological states in generalized electric quadrupole insulators”, Phys. Rev. B 101, 195309 (2020).
  62. B. Kang, K. Shiozaki,  and G. Y. Cho, “Many-body order parameters for multipoles in solids”, Phys. Rev. B 100, 245134 (2019).
  63. A. Agarwala, V. Juričić,  and B. Roy, “Higher-order topological insulators in amorphous solids”, Phys. Rev. Research 2, 012067 (2020).
  64. F. Beenker, Algebraic theory of non-periodic tilings of the plane by two simple building blocks : a square and a rhombus (Eindhoven University of Technology, 1982).
  65. M. Duneau, “Approximants of quasiperiodic structures generated by the inflation mapping”, J. Phys. A 22, 4549 (1989).
  66. P. Kramer and Z. Papadopolos, Coverings of discrete quasiperiodic sets: theory and applications to quasicrystals, Vol. 180 (Springer, 2003).
  67. A. Altland and M. R. Zirnbauer, “Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures”, Phys. Rev. B 55, 1142 (1997).
  68. A. P. Schnyder, S. Ryu, A. Furusaki,  and A. W. W. Ludwig, “Classification of topological insulators and superconductors in three spatial dimensions”, Phys. Rev. B 78, 195125 (2008).
  69. B. A. Bernevig, T. L. Hughes,  and S.-C. Zhang, “Quantum spin hall effect and topological phase transition in hgte quantum wells”, Science 314, 1757 (2006).
  70. X. Cheng, T. Qu, L. Xiao, S. Jia, J. Chen,  and L. Zhang, “Topological anderson amorphous insulator”, Phys. Rev. B 108, L081110 (2023).
  71. A. MacKinnon, “The calculation of transport properties and density of states of disordered solids”, Z.Phys.B 59, 385 (1985).
  72. G. Metalidis and P. Bruno, “Green’s function technique for studying electron flow in two-dimensional mesoscopic samples”, Phys. Rev. B 72, 235304 (2005).
  73. H. Tsunetsugu, T. Fujiwara, U. Kazuo,  and T. Tokihiro, “Eigenstates in 2-dimensional penrose tiling”, J. Phys. Soc. Jpn. 55 (1986).
  74. H. Tsunetsugu, T. Fujiwara, K. Ueda,  and T. Tokihiro, “Electronic properties of the penrose lattice. i. energy spectrum and wave functions”, Phys. Rev. B 43, 8879 (1991).
  75. Entin-Wohlman, O., Kléman, M.,  and Pavlovitch, A., “Penrose tiling approximants”, J. Phys. France 49, 587 (1988).
  76. H. Araki, T. Mizoguchi,  and Y. Hatsugai, “Phase diagram of a disordered higher-order topological insulator: A machine learning study”, Phys. Rev. B 99, 085406 (2019).
  77. T. Peng, C.-B. Hua, R. Chen, Z.-R. Liu, H.-M. Huang,  and B. Zhou, “Density-driven higher-order topological phase transitions in amorphous solids”, Phys. Rev. B 106, 125310 (2022).
  78. Z.-R. Liu, C.-B. Hua, T. Peng, R. Chen,  and B. Zhou, “Higher-order topological insulators in hyperbolic lattices”, Phys. Rev. B 107, 125302 (2023).
  79. B. Zhou, H.-Z. Lu, R.-L. Chu, S.-Q. Shen,  and Q. Niu, “Finite Size Effects on Helical Edge States in a Quantum Spin-Hall System”, Phys. Rev. Lett. 101, 246807 (2008).
  80. Y.-L. Tao, J.-H. Wang,  and Y. Xu, “Average symmetry protected higher-order topological amorphous insulators”, SciPost Phys. 15, 193 (2023).
  81. Y.-F. Mao, Y.-L. Tao, J.-H. Wang, Q.-B. Zeng,  and Y. Xu, “Higher-order Topological Insulators and Semimetals in Three Dimensions without Crystalline Counterparts”, arXiv:2307.14974 .
  82. J. Zhang, Z.-Q. Zhang, S.-g. Cheng,  and H. Jiang, “Topological anderson insulator via disorder-recovered average symmetry”, Phys. Rev. B 106, 195304 (2022).
  83. L. Fu and C. L. Kane, “Topology, Delocalization via Average Symmetry and the Symplectic Anderson Transition”, Phys. Rev. Lett. 109, 246605 (2012).
  84. N. Yoshioka, Y. Akagi,  and H. Katsura, “Learning disordered topological phases by statistical recovery of symmetry”, Phys. Rev. B 97, 205110 (2018).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com