Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating insights about financial asks from Reddit posts and user interactions (2403.04308v2)

Published 7 Mar 2024 in cs.SI

Abstract: As an increasingly large number of people turn to platforms like Reddit, YouTube, Twitter, Instagram, etc. for financial advice, generating insights about the content generated and interactions taking place within these platforms have become a key research question. This study proposes content and interaction analysis techniques for a large repository created from social media content, where people interactions are centered around financial information exchange. We propose methods for content analysis that can generate human-interpretable insights using topic-centered clustering and multi-document abstractive summarization. We share details of insights generated from our experiments with a large repository of data gathered from subreddit for personal finance. We have also explored the use of ChatGPT and Vicuna for generating responses to queries and compared them with human responses. The methods proposed in this work are generic and applicable to all large social media platforms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. J. Egan, “Nearly 80% Of Young Adults Get Financial Advice From This Surprising Place,” https://www.forbes.com/advisor/investing/financial-advisor/adults-financial-advice-social-media/, 2023.
  2. H. Yanto, N. Ismail, K. Kiswanto, N. M. Rahim, and N. Baroroh, “The roles of peers and social media in building financial literacy among the millennial generation: A case of indonesian economics and business students,” Cogent Social Sciences, vol. 7, no. 1, p. 1947579, 2021.
  3. G. Isomidinova, J. S. K. Singh, and K. Singh, “Determinants of financial literacy: a quantitative study among young students in tashkent, uzbekistan,” Electronic Journal of Business & Management, vol. 2, no. 1, pp. 61–75, 2017.
  4. R. Rehurek and P. Sojka, “Gensim–python framework for vector space modelling,” NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, vol. 3, no. 2, p. 2, 2011.
  5. R. Campos, V. Mangaravite, A. Pasquali, A. Jorge, C. Nunes, and A. Jatowt, “YAKE! Keyword extraction from single documents using multiple local features,” Information Sciences, vol. 509, pp. 257–289, 2020.
  6. Pushshift, “Calling API for dumping dataset,” https://pushshift.io/api-parameters, 2021, accessed: 2021-01-01.
  7. W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez et al., “Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality,” See https://vicuna. lmsys. org (accessed 14 April 2023), 2023.
  8. N. Oliveira, P. Cortez, and N. Areal, “The impact of microblogging data for stock market prediction: Using twitter to predict returns, volatility, trading volume and survey sentiment indices,” Expert Systems with applications, vol. 73, pp. 125–144, 2017.
  9. M. A. Sattar, M. Toseef, and M. F. Sattar, “Behavioral finance biases in investment decision making,” International Journal of Accounting, Finance and Risk Management, vol. 5, no. 2, p. 69, 2020.
  10. D. E. Froehlich and J. Brouwer, “Social network analysis as mixed analysis,” in The Routledge Reviewer’s Guide to Mixed Methods Analysis.   Routledge, 2021, pp. 209–218.
  11. H. Yin, S. Yang, and J. Li, “Detecting topic and sentiment dynamics due to Covid-19 pandemic using social media,” in International Conference on Advanced Data Mining and Applications.   Springer, 2020, pp. 610–623.
  12. D. R. Prabhakar Kaila and D. A. Prasad, “Informational flow on twitter–corona virus outbreak–topic modelling approach,” International Journal of Advanced Research in Engineering and Technology (IJARET), vol. 11, no. 3, 2020.
  13. V. Karpenko, K. Mukhina, D. Rybakova, I. Busurkina, and D. Bulygin, “A study of personal finance practices. the case of online discussions on reddit.” in IMS, 2021, pp. 206–211.
  14. X. Deng, V. Bashlovkina, F. Han, S. Baumgartner, and M. Bendersky, “What do llms know about financial markets? a case study on reddit market sentiment analysis,” arXiv preprint arXiv:2212.11311, 2022.
  15. X. Yu, Z. Chen, Y. Ling, S. Dong, Z. Liu, and Y. Lu, “Temporal data meets llm–explainable financial time series forecasting,” arXiv preprint arXiv:2306.11025, 2023.
  16. S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann, P. Kambadur, D. Rosenberg, and G. Mann, “Bloomberggpt: A large language model for finance,” arXiv preprint arXiv:2303.17564, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sachin Thukral (6 papers)
  2. Suyash Sangwan (3 papers)
  3. Vipul Chauhan (1 paper)
  4. Arnab Chatterjee (44 papers)
  5. Lipika Dey (12 papers)

Summary

We haven't generated a summary for this paper yet.