A Big Data Analytics System for Predicting Suicidal Ideation in Real-Time Based on Social Media Streaming Data (2404.12394v1)
Abstract: Online social media platforms have recently become integral to our society and daily routines. Every day, users worldwide spend a couple of hours on such platforms, expressing their sentiments and emotional state and contacting each other. Analyzing such huge amounts of data from these platforms can provide a clear insight into public sentiments and help detect their mental status. The early identification of these health condition risks may assist in preventing or reducing the number of suicide ideation and potentially saving people's lives. The traditional techniques have become ineffective in processing such streams and large-scale datasets. Therefore, the paper proposed a new methodology based on a big data architecture to predict suicidal ideation from social media content. The proposed approach provides a practical analysis of social media data in two phases: batch processing and real-time streaming prediction. The batch dataset was collected from the Reddit forum and used for model building and training, while streaming big data was extracted using Twitter streaming API and used for real-time prediction. After the raw data was preprocessed, the extracted features were fed to multiple Apache Spark ML classifiers: NB, LR, LinearSVC, DT, RF, and MLP. We conducted various experiments using various feature-extraction techniques with different testing scenarios. The experimental results of the batch processing phase showed that the features extracted of (Unigram + Bigram) + CV-IDF with MLP classifier provided high performance for classifying suicidal ideation, with an accuracy of 93.47%, and then applied for real-time streaming prediction phase.
- W.H. Organization. World Health Organization. URL https://www.who.int/news-room/events/detail/2022/09/10/default-calendar/world-suicide-prevention-day-2022 [2] M.W. Gijzen, S.P. Rasing, D.H. Creemers, F. Smit, R.C. Engels, D. De Beurs, Suicide ideation as a symptom of adolescent depression. a network analysis. Journal of Affective Disorders 278, 68–77 (2021) [3] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [4] T.H. Aldhyani, S.N. Alsubari, A.S. Alshebami, H. Alkahtani, Z.A. Ahmed, Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. International journal of environmental research and public health 19(19), 12635 (2022) [5] N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.W. Gijzen, S.P. Rasing, D.H. Creemers, F. Smit, R.C. Engels, D. De Beurs, Suicide ideation as a symptom of adolescent depression. a network analysis. Journal of Affective Disorders 278, 68–77 (2021) [3] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [4] T.H. Aldhyani, S.N. Alsubari, A.S. Alshebami, H. Alkahtani, Z.A. Ahmed, Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. International journal of environmental research and public health 19(19), 12635 (2022) [5] N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [4] T.H. Aldhyani, S.N. Alsubari, A.S. Alshebami, H. Alkahtani, Z.A. Ahmed, Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. International journal of environmental research and public health 19(19), 12635 (2022) [5] N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) T.H. Aldhyani, S.N. Alsubari, A.S. Alshebami, H. Alkahtani, Z.A. Ahmed, Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. International journal of environmental research and public health 19(19), 12635 (2022) [5] N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Journal of Affective Disorders 278, 68–77 (2021) [3] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [4] T.H. Aldhyani, S.N. Alsubari, A.S. Alshebami, H. Alkahtani, Z.A. Ahmed, Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. International journal of environmental research and public health 19(19), 12635 (2022) [5] N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [4] T.H. Aldhyani, S.N. Alsubari, A.S. Alshebami, H. Alkahtani, Z.A. Ahmed, Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. International journal of environmental research and public health 19(19), 12635 (2022) [5] N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) T.H. Aldhyani, S.N. Alsubari, A.S. Alshebami, H. Alkahtani, Z.A. Ahmed, Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. International journal of environmental research and public health 19(19), 12635 (2022) [5] N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- NPJ digital medicine 3(1), 1–12 (2020) [4] T.H. Aldhyani, S.N. Alsubari, A.S. Alshebami, H. Alkahtani, Z.A. Ahmed, Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. International journal of environmental research and public health 19(19), 12635 (2022) [5] N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) T.H. Aldhyani, S.N. Alsubari, A.S. Alshebami, H. Alkahtani, Z.A. Ahmed, Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. International journal of environmental research and public health 19(19), 12635 (2022) [5] N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- International journal of environmental research and public health 19(19), 12635 (2022) [5] N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.A. Baghdadi, A. Malki, H.M. Balaha, Y. AbdulAzeem, M. Badawy, M. Elhosseini, An optimized deep learning approach for suicide detection through Arabic tweets. PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- PeerJ Computer Science 8, e1070 (2022) [6] S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.A. Senthilkumar, B.K. Rai, A.A. Meshram, A. Gunasekaran, S. Chandrakumarmangalam, Big data in healthcare management: a review of literature. American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- American Journal of Theoretical and Applied Business 4(2), 57–69 (2018) [7] S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Ayvaz, M.O. Shiha, A scalable streaming big data architecture for real-time sentiment analysis, in Proceedings of the 2018 2nd international conference on cloud and big data computing (2018), pp. 47–51 [8] A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- A.H. Alamoodi, B.B. Zaidan, A.A. Zaidan, O.S. Albahri, K.I. Mohammed, R.Q. Malik, E.M. Almahdi, M.A. Chyad, Z. Tareq, A.S. Albahri, et al., Sentiment analysis and its applications in fighting covid-19 and infectious diseases: A systematic review. Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Expert systems with applications 167, 114155 (2021) [9] G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) G. Agarwal, S.K. Dinkar, A. Agarwal, Binarized spiking neural networks optimized with nomadic people optimization-based sentiment analysis for social product recommendation. Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Knowledge and Information Systems 66(2), 933–958 (2024) [10] P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) P. Rita, N. António, A.P. Afonso, Social media discourse and voting decisions influence: sentiment analysis in tweets during an electoral period. Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Social Network Analysis and Mining 13(1), 46 (2023) [11] N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Öztürk, S. Ayvaz, Sentiment analysis on twitter: A text mining approach to the syrian refugee crisis. Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Telematics and Informatics 35(1), 136–147 (2018) [12] M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.A. Allayla, S. Ayvaz, A Hybrid and Scalable Sentiment Analysis Framework: Case of Russo-Ukrainian War, in 2023 3rd International Scientific Conference of Engineering Sciences (ISCES) (IEEE, 2023), pp. 13–18 [13] S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- S. Jain, S.P. Narayan, R.K. Dewang, U. Bhartiya, N. Meena, V. Kumar, A machine learning based depression analysis and suicidal ideation detection system using questionnaires and twitter, in 2019 IEEE Students Conference on Engineering and Systems (SCES) (IEEE, 2019), pp. 1–6 [14] R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- R. Sawhney, P. Manchanda, R. Singh, S. Aggarwal, A computational approach to feature extraction for identification of suicidal ideation in tweets, in Proceedings of ACL 2018, Student Research Workshop (2018), pp. 91–98 [15] V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- V. Desu, N. Komati, S. Lingamaneni, F. Shaik, Suicide and Depression Detection in Social Media Forums, in Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (Springer, 2022), pp. 263–270 [16] N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- N. Wang, F. Luo, Y. Shivtare, V.D. Badal, K.P. Subbalakshmi, R. Chandramouli, E. Lee, Learning models for suicide prediction from social media posts. arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- arXiv preprint arXiv:2105.03315 (2021) [17] M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Chatterjee, P. Kumar, P. Samanta, D. Sarkar, Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- International Journal of Information Management Data Insights 2(2), 100103 (2022) [18] A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A.E. Aladağ, S. Muderrisoglu, N.B. Akbas, O. Zahmacioglu, H.O. Bingol, Detecting suicidal ideation on forums: proof-of-concept study. Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Journal of medical Internet research 20(6), e9840 (2018) [19] N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N.J. Carson, B. Mullin, M.J. Sanchez, F. Lu, K. Yang, M. Menezes, B.L. Cook, Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- PloS one 14(2), e0211116 (2019) [20] A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Roy, K. Nikolitch, R. McGinn, S. Jinah, W. Klement, Z.A. Kaminsky, A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- NPJ digital medicine 3(1), 1–12 (2020) [21] M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.J. Vioules, B. Moulahi, J. Azé, S. Bringay, Detection of suicide-related posts in Twitter data streams. IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- IBM Journal of Research and Development 62(1), 1–7 (2018) [22] W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Jung, D. Kim, S. Nam, Y. Zhu, Suicidality detection on social media using metadata and text feature extraction and machine learning. Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Archives of suicide research pp. 1–16 (2021) [23] M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M.M. Tadesse, H. Lin, B. Xu, L. Yang, Detection of depression-related posts in reddit social media forum. IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- IEEE Access 7, 44883–44893 (2019) [24] M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Birjali, A. Beni-Hssane, M. Erritali, Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Procedia Computer Science 113, 65–72 (2017) [25] E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E. Shaikh, I. Mohiuddin, Y. Alufaisan, I. Nahvi, Apache spark: A big data processing engine, in 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM) (IEEE, 2019), pp. 1–6 [26] M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- M. Junaid, S. Ali, I.F. Siddiqui, C. Nam, N.M.F. Qureshi, J. Kim, D.R. Shin, Performance Evaluation of Data-driven Intelligent Algorithms for Big data Ecosystem. Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Wireless Personal Communications 126(3), 2403–2423 (2022). 10.1007/s11277-021-09362-7. URL https://doi.org/10.1007/s11277-021-09362-7 [27] K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) K. Deshpande, M. Rao, in Inventive Computation and Information Technologies (Springer, 2022), pp. 607–630 [28] NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- NIKHILESWAR KOMATI. Suicide and Depression Detection. URL https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch [29] S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S. Vijayarani, M.J. Ilamathi, M. Nithya, Preprocessing techniques for text mining-an overview. International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- International Journal of Computer Science and Communication Networks 5(1), 7–16 (2015) [30] S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) S.F.C. Haviana, B.S.W. Poetro, Deep learning model for sentiment analysis on short informal texts. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 10(1), 82–89 (2022) [31] W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) W. Shang, T. Underwood, Improving Measures of Text Reuse in English Poetry: A TF–IDF Based Method, in International Conference on Information (Springer, 2021), pp. 469–477 [32] R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- R. Vijaya Prakash, Machine Learning Approach To Forecast the Word in Social Media. Social Network Analysis: Theory and Applications pp. 133–147 (2022) [33] J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) J. Brownlee, Deep learning for natural language processing: develop deep learning models for your natural language problems (Machine Learning Mastery, 2017) [34] R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- R. Mehmood, B. Bhaduri, I. Katib, I. Chlamtac, Smart Societies, Infrastructure, Technologies and Applications: First International Conference, SCITA 2017, Jeddah, Saudi Arabia, November 27–29, 2017, Proceedings, vol. 224 (Springer, 2018) [35] E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- E.M.K. Reddy, A. Gurrala, V.B. Hasitha, K.V.R. Kumar, Introduction to Naive Bayes and a Review on Its Subtypes with Applications. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Bayesian Reasoning and Gaussian Processes for Machine Learning Applications pp. 1–14 (2022) [36] A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) A. Goel, J. Gautam, S. Kumar, Real time sentiment analysis of tweets using Naive Bayes, in 2016 2nd International Conference on Next Generation Computing Technologies (NGCT) (IEEE, 2016), pp. 257–261 [37] M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- M. Jena, R.K. Behera, S. Dehuri, in Advances in Machine Learning for Big Data Analysis (Springer, 2022), pp. 223–239 [38] L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- L. Breiman, Random Forests. Machine Learning 45(1), 5–32 (2001). 10.1023/A:1010933404324 [39] N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Syam, R. Kaul, in Machine Learning and Artificial Intelligence in Marketing and Sales (Emerald Publishing Limited, 2021) [40] N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022) N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- N. Jalal, A. Mehmood, G.S. Choi, I. Ashraf, A novel improved random forest for text classification using feature ranking and optimal number of trees. Journal of King Saud University-Computer and Information Sciences (2022)
- Journal of King Saud University-Computer and Information Sciences (2022)
- Mohamed A. Allayla (1 paper)
- Serkan Ayvaz (8 papers)