Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cafe-Mpc: A Cascaded-Fidelity Model Predictive Control Framework with Tuning-Free Whole-Body Control (2403.03995v3)

Published 6 Mar 2024 in cs.RO

Abstract: This work introduces an optimization-based locomotion control framework for on-the-fly synthesis of complex dynamic maneuvers. At the core of the proposed framework is a cascaded-fidelity model predictive controller (Cafe-Mpc). Cafe-Mpc strategically relaxes the planning problem along the prediction horizon (i.e., with descending model fidelity, increasingly coarse time steps, and relaxed constraints) for computational and performance gains. This problem is numerically solved with an efficient customized multiple-shooting iLQR (MS-iLQR) solver that is tailored for hybrid systems. The action-value function from Cafe-Mpc is then used as the basis for a new value-function-based whole-body control (VWBC) technique that avoids additional tuning for the WBC. In this respect, the proposed framework unifies whole-body MPC and more conventional whole-body quadratic programming (QP), which have been treated as separate components in previous works. We study the effects of the cascaded relaxations in Cafe-Mpc on the tracking performance and required computation time. We also show that the Cafe-Mpc, if configured appropriately, advances the performance of whole-body MPC without necessarily increasing computational cost. Further, we show the superior performance of the proposed VWBC over the Riccati feedback controller in terms of constraint handling. The proposed framework enables accomplishing for the first time gymnastic-style running barrel rolls on the MIT Mini Cheetah. Video: https://youtu.be/YiNqrgj9mb8.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (105)
  1. G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim, “MIT cheetah 3: Design and control of a robust, dynamic quadruped robot,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, 2018, pp. 2245–2252.
  2. H.-W. Park, P. M. Wensing, and S. Kim, “High-speed bounding with the MIT cheetah 2: Control design and experiments,” Int. J. of Robotics Research, vol. 36, pp. 167–192, 2017.
  3. B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for pushing the limits of dynamic quadruped control,” in Int. Conf.  on Robotics and Automation, 2019, pp. 6295–6301.
  4. R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered safety for legged robots via control barrier functions and model predictive control,” in IEEE Int. Conf.  on Robotics and Automation, 2021, pp. 8352–8358.
  5. R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, “Perceptive locomotion through nonlinear model-predictive control,” IEEE Transactions on Robotics, 2023.
  6. J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills for legged robots,” Science Robotics, vol. 4, no. 26, 2019.
  7. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over challenging terrain,” Science robotics, vol. 5, no. 47, 2020.
  8. S. Hong, Y. Um, J. Park, and H.-W. Park, “Agile and versatile climbing on ferromagnetic surfaces with a quadrupedal robot,” Science Robotics, vol. 7, no. 73, p. eadd1017, 2022.
  9. S. Choi, G. Ji, J. Park, H. Kim, J. Mun, J. H. Lee, and J. Hwangbo, “Learning quadrupedal locomotion on deformable terrain,” Science Robotics, vol. 8, no. 74, p. eade2256, 2023.
  10. E. Ackerman. (2022) Watch the hyqreal robot pull an airplane. [Online]. Available: https://spectrum.ieee.org/watch-iits-new-hyqreal-quadruped-robot-pull-an-airplane
  11. O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Caldwell, and C. Semini, “MPC-based controller with terrain insight for dynamic legged locomotion,” in IEEE Int. Conf.  on Robotics and Automation, 2020, pp. 2436–2442.
  12. M. Chignoli and S. Kim, “Online trajectory optimization for dynamic aerial motions of a quadruped robot,” in IEEE Int. Conf.  on Robotics and Automation, 2021, pp. 7693–7699.
  13. Z. Song, L. Yue, G. Sun, Y. Ling, H. Wei, L. Gui, and Y.-H. Liu, “An optimal motion planning framework for quadruped jumping,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 11 366–11 373.
  14. C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger, and G. Martius, “Learning agile skills via adversarial imitation of rough partial demonstrations,” in Conference on Robot Learning.   PMLR, 2023, pp. 342–352.
  15. C. Mastalli, S. P. Chhatoi, T. Corbéres, S. Tonneau, and S. Vijayakumar, “Inverse-dynamics mpc via nullspace resolution,” IEEE Transactions on Robotics, 2023.
  16. E. Dantec, M. Naveau, P. Fernbach, N. Villa, G. Saurel, O. Stasse, M. Taïx, and N. Mansard, “Whole-body model predictive control for biped locomotion on a torque-controlled humanoid robot,” in IEEE-RAS Int. Conf.  on Humanoid Robots (Humanoids), 2022, pp. 638–644.
  17. W. Jallet, A. Bambade, E. Arlaud, S. El-Kazdadi, N. Mansard, and J. Carpentier, “Proxddp: Proximal constrained trajectory optimization,” 2023.
  18. J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion in the mit cheetah 3 through convex model-predictive control,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, 2018, pp. 1–9.
  19. A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti, “Biconmp: A nonlinear model predictive control framework for whole body motion planning,” IEEE Transactions on Robotics, vol. 39, no. 2, pp. 905–922, 2023.
  20. Y.-M. Chen, J. Hu, and M. Posa, “Beyond inverted pendulums: Task-optimal simple models of legged locomotion,” arXiv preprint arXiv:2301.02075, 2023.
  21. J. Li, J. Ma, O. Kolt, M. Shah, and Q. Nguyen, “Dynamic loco-manipulation on hector: Humanoid for enhanced control and open-source research,” arXiv preprint arXiv:2312.11868, 2023.
  22. Z. Gu, R. Guo, W. Yates, Y. Chen, and Y. Zhao, “Walking-by-logic: Signal temporal logic-guided model predictive control for bipedal locomotion resilient to external perturbations,” arXiv preprint arXiv:2309.13172, 2023.
  23. P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. Del Prete, “Optimization-based control for dynamic legged robots,” IEEE Transactions on Robotics, 2023.
  24. H. Li, W. Yu, T. Zhang, and P. M. Wensing, “A unified perspective on multiple shooting in differential dynamic programming,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 9978–9985.
  25. Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex behaviors through online trajectory optimization,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, 2012, pp. 4906–4913.
  26. P.-B. Wieber, “Trajectory free linear model predictive control for stable walking in the presence of strong perturbations,” in IEEE-RAS Int. Conf.  on Humanoid Robots, 2006, pp. 137–142.
  27. M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model predictive control through contacts for quadrupeds,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1458–1465, 2018.
  28. G. Bledt and S. Kim, “Implementing regularized predictive control for simultaneous real-time footstep and ground reaction force optimization,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, 2019, pp. 6316–6323.
  29. S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot,” Autonomous robots, vol. 40, no. 3, pp. 429–455, 2016.
  30. T. Apgar, P. Clary, K. Green, A. Fern, and J. W. Hurst, “Fast online trajectory optimization for the bipedal robot cassie.” in Robotics: Science and Systems, 2018.
  31. M. Hutter, H. Sommer, C. Gehring, M. Hoepflinger, M. Bloesch, and R. Siegwart, “Quadrupedal locomotion using hierarchical operational space control,” The Int. Journal of Robotics Research, vol. 33, pp. 1047–1062, 2014.
  32. Y. Gao, Y. Gong, V. Paredes, A. Hereid, and Y. Gu, “Time-varying alip model and robust foot-placement control for underactuated bipedal robotic walking on a swaying rigid surface,” in 2023 American Control Conference (ACC).   IEEE, 2023, pp. 3282–3287.
  33. P. M. Wensing and D. E. Orin, “High-speed humanoid running through control with a 3d-slip model,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, 2013, pp. 5134–5140.
  34. G. Bledt, P. M. Wensing, and S. Kim, “Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, 2017, pp. 4102–4109.
  35. A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and trajectory optimization for legged systems through phase-based end-effector parameterization,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1560–1567, 2018.
  36. D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a humanoid robot,” Autonomous robots, vol. 35, pp. 161–176, 2013.
  37. H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning with centroidal dynamics and full kinematics,” in IEEE-RAS Int. Conf.  on Humanoid Robots, 2014, pp. 295–302.
  38. P. M. Wensing and D. E. Orin, “Improved computation of the humanoid centroidal dynamics and application for whole-body control,” Int. Journal of Humanoid Robotics, vol. 13, 2016.
  39. G. Romualdi, S. Dafarra, G. L’Erario, I. Sorrentino, S. Traversaro, and D. Pucci, “Online non-linear centroidal mpc for humanoid robot locomotion with step adjustment,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 10 412–10 419.
  40. C. Mastalli, W. Merkt, J. Marti-Saumell, H. Ferrolho, J. Solà, N. Mansard, and S. Vijayakumar, “A feasibility-driven approach to control-limited ddp,” Autonomous Robots, pp. 1–21, 2022.
  41. S. Katayama and T. Ohtsuka, “Structure-exploiting newton-type method for optimal control of switched systems,” International Journal of Control, no. just-accepted, p. 1, 2023.
  42. A. Jordana, S. Kleff, A. Meduri, J. Carpentier, N. Mansard, and L. Righetti, “Stagewise implementations of sequential quadratic programming for model-predictive control,” 2023.
  43. J. Carpentier and N. Mansard, “Analytical derivatives of rigid body dynamics algorithms,” in Robotics: Science and systems, 2018.
  44. S. Singh, R. P. Russell, and P. M. Wensing, “Efficient analytical derivatives of rigid-body dynamics using spatial vector algebra,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1776–1783, 2022.
  45. H. Li, R. J. Frei, and P. M. Wensing, “Model hierarchy predictive control of robotic systems,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3373–3380, 2021.
  46. J. Wang, S. Kim, S. Vijayakumar, and S. Tonneau, “Multi-fidelity receding horizon planning for multi-contact locomotion,” in 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids).   IEEE, 2021, pp. 53–60.
  47. Y. Liu, J. Shen, J. Zhang, X. Zhang, T. Zhu, and D. Hong, “Design and control of a miniature bipedal robot with proprioceptive actuation for dynamic behaviors,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 8547–8553.
  48. C. Khazoom and S. Kim, “Humanoid arm motion planning for improved disturbance recovery using model hierarchy predictive control,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 6607–6613.
  49. C. Khazoom, S. Heim, D. Gonzalez-Diaz, and S. Kim, “Optimal scheduling of models and horizons for model hierarchy predictive control,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 9952–9958.
  50. J. Norby, A. Tajbakhsh, Y. Yang, and A. M. Johnson, “Adaptive complexity model predictive control,” arXiv preprint arXiv:2209.02849, 2022.
  51. S. Kameswaran and N. Subrahmanya, “Multi-fidelity models for model predictive control,” in Computer Aided Chemical Engineering.   Elsevier, 2012, vol. 31, pp. 1627–1631.
  52. S. Shin and V. M. Zavala, “Diffusing-horizon model predictive control,” IEEE Transactions on Automatic Control, 2021.
  53. T. Bäthge, S. Lucia, and R. Findeisen, “Exploiting models of different granularity in robust predictive control,” in 2016 IEEE 55th Conference on Decision and Control (CDC).   IEEE, 2016, pp. 2763–2768.
  54. T. Brüdigam, D. Prader, D. Wollherr, and M. Leibold, “Model predictive control with models of different granularity and a non-uniformly spaced prediction horizon,” in 2021 American Control Conference (ACC).   IEEE, 2021, pp. 3876–3881.
  55. V. A. Laurense and J. C. Gerdes, “Long-horizon vehicle motion planning and control through serially cascaded model complexity,” IEEE Transactions on Control Systems Technology, vol. 30, no. 1, pp. 166–179, 2022.
  56. G. Kim, D. Kang, J.-H. Kim, S. Hong, and H.-W. Park, “Contact-implicit mpc: Controlling diverse quadruped motions without pre-planned contact modes or trajectories,” arXiv preprint arXiv:2312.08961, 2023.
  57. V. Kurtz, A. Castro, A. Ö. Önol, and H. Lin, “Inverse dynamics trajectory optimization for contact-implicit model predictive control,” arXiv preprint arXiv:2309.01813, 2023.
  58. S. Le Cleac’h, T. A. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. Bishop, M. Schwager, and Z. Manchester, “Fast contact-implicit model predictive control,” IEEE Transactions on Robotics, 2024.
  59. M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct multiple shooting algorithms for optimal robot control,” in Fast motions in biomechanics and robotics, 2006, pp. 65–93.
  60. P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An sqp algorithm for large-scale constrained optimization,” SIAM review, vol. 47, no. 1, pp. 99–131, 2005.
  61. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, pp. 25–57, 2006.
  62. M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme for nonlinear optimization in optimal feedback control,” SIAM Journal on control and optimization, vol. 43, no. 5, pp. 1714–1736, 2005.
  63. G. Frison and M. Diehl, “Hpipm: a high-performance quadratic programming framework for model predictive control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6563–6569, 2020.
  64. D. Mayne, “A second-order gradient method for determining optimal trajectories of non-linear discrete-time systems,” Int. Journal of Control, vol. 3, no. 1, pp. 85–95, 1966.
  65. R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc for torque-controlled legged robots,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, 2019, pp. 4730–4737.
  66. J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz, and N. Mansard, “Whole-body model-predictive control applied to the HRP-2 humanoid,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, pp. 3346–3351.
  67. M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajectory optimization through contacts and automatic gait discovery for quadrupeds,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1502–1509, 2017.
  68. Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic programming,” in IEEE Int. Conf.  on Robotics and Automation, 2014, pp. 1168–1175.
  69. F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, “An efficient optimal planning and control framework for quadrupedal locomotion,” in IEEE Int. Conf.  on Robotics and Automation, 2017, pp. 93–100.
  70. A. Pavlov, I. Shames, and C. Manzie, “Interior point differential dynamic programming,” IEEE Transactions on Control Systems Technology, vol. 29, no. 6, pp. 2720–2727, 2021.
  71. T. A. Howell, B. E. Jackson, and Z. Manchester, “ALTRO: a fast solver for constrained trajectory optimization,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, 2019, pp. 7674–7679.
  72. G. Lantoine and R. P. Russell, “A hybrid differential dynamic programming algorithm for constrained optimal control problems. part 1: theory,” Journal of Optimization Theory and Applications, vol. 154, no. 2, pp. 382–417, 2012.
  73. B. Plancher, Z. Manchester, and S. Kuindersma, “Constrained unscented dynamic programming,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, 2017, pp. 5674–5680.
  74. M. Giftthaler, M. Neunert, M. Stäuble, J. Buchli, and M. Diehl, “A family of iterative gauss-newton shooting methods for nonlinear optimal control,” in IEEE/RSJ Int. Conf.  on Intelligent Robots and Systems, 2018, pp. 1–9.
  75. L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through hierarchical control of behavioral primitives,” International Journal of Humanoid Robotics, vol. 2, no. 04, pp. 505–518, 2005.
  76. S. Kuindersma, F. Permenter, and R. Tedrake, “An efficiently solvable quadratic program for stabilizing dynamic locomotion,” in IEEE Int. Conf.  on Robotics and Automation, 2014, pp. 2589–2594.
  77. D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control,” arXiv preprint arXiv:1909.06586, 2019.
  78. H. Li, T. Zhang, W. Yu, and P. M. Wensing, “Versatile real-time motion synthesis via kino-dynamic mpc with hybrid-systems ddp,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 9988–9994.
  79. M. Chignoli and P. M. Wensing, “Variational-based optimal control of underactuated balancing for dynamic quadrupeds,” IEEE Access, vol. 8, pp. 49 785–49 797, 2020.
  80. T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning robust perceptive locomotion for quadrupedal robots in the wild,” Science Robotics, vol. 7, p. 2822.
  81. X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine, “Learning agile robotic locomotion skills by imitating animals,” 2020.
  82. G. Ji, J. Mun, H. Kim, and J. Hwangbo, “Concurrent training of a control policy and a state estimator for dynamic and robust legged locomotion,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4630–4637, 2022.
  83. D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour: Learning agile navigation for quadrupedal robots,” 2023.
  84. Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao, “Robot parkour learning,” arXiv preprint arXiv:2309.05665, 2023.
  85. X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with legged robots,” arXiv preprint arXiv:2309.14341, 2023.
  86. G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal, “Rapid locomotion via reinforcement learning,” arXiv preprint arXiv:2205.02824, 2022.
  87. Y. Yang, G. Shi, X. Meng, W. Yu, T. Zhang, J. Tan, and B. Boots, “Cajun: Continuous adaptive jumping using a learned centroidal controller,” arXiv e-prints, pp. arXiv–2306, 2023.
  88. F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep tracking control.” Science Robotics, vol. 9, no. 86, pp. eadh5401–eadh5401, 2024.
  89. H. Li and P. M. Wensing, “Hybrid systems differential dynamic programming for whole-body motion planning of legged robots,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5448 – 5455, 2020.
  90. C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and N. Mansard, “Crocoddyl: An efficient and versatile framework for multi-contact optimal control,” in IEEE Int. Conf.  on Robotics and Automation, 2020, pp. 2536–2542.
  91. P.-B. Wieber, “Viability and predictive control for safe locomotion,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2008, pp. 1103–1108.
  92. J. Hauser and A. Saccon, “A barrier function method for the optimization of trajectory functionals with constraints,” in IEEE Conference on Decision and Control (CDC), 2006, pp. 864–869.
  93. S. Singh, R. P. Russell, and P. M. Wensing, “On second-order derivatives of rigid-body dynamics: Theory & implementation,” IEEE Transactions on Robotics (to appear), 2024.
  94. J. Baumgarte, “Stabilization of constraints and integrals of motion in dynamical systems,” Computer methods in applied mechanics and engineering, vol. 1, no. 1, pp. 1–16, 1972.
  95. R. Budhiraja, J. Carpentier, C. Mastalli, and N. Mansard, “Differential dynamic programming for multi-phase rigid contact dynamics,” in IEEE-RAS 18th Int. Conf.  on Humanoid Robots (Humanoids), 2018, pp. 1–9.
  96. J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse, and N. Mansard, “The pinocchio c++ library – a fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives,” in IEEE International Symposium on System Integrations (SII), 2019.
  97. K. J. Waldron and J. Schmiedeler, “Kinematics,” Springer handbook of robotics, pp. 11–36, 2016.
  98. X. Xiong and A. Ames, “3-d underactuated bipedal walking via h-lip based gait synthesis and stepping stabilization,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2405–2425, 2022.
  99. M. Focchi, G. A. Medrano-Cerda, T. Boaventura, M. Frigerio, C. Semini, J. Buchli, and D. G. Caldwell, “Robot impedance control and passivity analysis with inner torque and velocity feedback loops,” Control Theory and Technology, vol. 14, pp. 97–112, 2016.
  100. M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid bodies through contact,” The Int. Journal of Robotics Research, vol. 33, pp. 69–81, 2014.
  101. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
  102. A. S. Huang, E. Olson, and D. C. Moore, “Lcm: Lightweight communications and marshalling,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 4057–4062.
  103. H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES: A parametric active-set algorithm for quadratic programming,” Mathematical Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.
  104. B. E. Jackson, K. Tracy, and Z. Manchester, “Planning with attitude,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5658–5664, 2021.
  105. G. Bledt, P. M. Wensing, S. Ingersoll, and S. Kim, “Contact model fusion for event-based locomotion in unstructured terrains,” in IEEE Int. Conf.  on Robotics and Automation, 2018, pp. 4399–4406.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. He Li (88 papers)
  2. Patrick M. Wensing (35 papers)
Citations (8)

Summary

  • The paper proposes a cascaded-fidelity MPC that dynamically adjusts model precision along the prediction horizon to balance accuracy and computational load.
  • It introduces a value-function-based whole-body controller (VWBC) that eliminates heuristic tuning by integrating control within a quadratic programming framework.
  • The framework demonstrated robust real-world performance on the MIT Mini Cheetah, enabling advanced maneuvers like mid-air barrel rolls.

Analysis of {\sc Cafe-Mpc}: A Cascaded-Fidelity Model Predictive Control Framework

The framework presented, dubbed {\sc Cafe-Mpc}, represents an advancement in the optimization-based locomotion control of legged robots. The integration of cascaded-fidelity model predictive control (MPC) with a tuning-free whole-body controller (WBC) emphasizes both computational efficiency and performance improvement, key challenges inherent to real-time robotic applications.

The core of the paper is the proposal of a cascaded-fidelity MPC, a concept that builds upon and generalizes past efforts centered around Model Hierarchy Predictive Control (MHPC). By introducing an MPC scheme that dynamically reduces fidelity along the prediction horizon, the authors cleverly trade off model precision in the interest of computational efficiency. The framework incorporates a short horizon, high-fidelity plan governed by whole-body (WB) dynamics, while the distant term utilizes reduced-fidelity, Single-Rigid-Body (SRB) dynamics. Leveraging this approach allows for longer prediction horizons without a proportional increase in computational burden. Notably, the strategy of varying integration steps and relaxing constraints for long-term predictions further bolsters computational tractability.

The authors develop a modified multiple-shooting iteratively Linear Quadratic Regulator (MS-iLQR) solver tailored to solve the TO problems imbued in such a hybrid MPC setup. The framework handles all hybrid system intricacies by extending MS-DDP concepts to perform robustly on these mixed-fidelity objectives by meticulously managing state transitions across dynamics phases.

A standout aspect of this work is the value-function-based whole-body controller (VWBC). While traditional WBCs necessitate intricate and heuristic-dependent tuning, the VWBC circumvents this by employing the action-value function derived from the cascaded MPC. By embedding this in a quadratic programming (QP) problem, the VWBC establishes itself as a rigorous connector between high-level planning and low-level execution. It balances optimal performance derived from the value function with the physical constraints of the quadrupedal system, eliminating the need for additional control signal tuning.

Quantitative analysis reveals the robust performance of this framework across several locomotive tasks. Specifically, their evaluations strongly suggest that incorporating long-term predictions with coarse-model fidelity tangibly benefits state tracking over increased prediction horizons without drastically increasing computation costs. The deployment of the proposed control scheme on the quintessentially agile MIT Mini Cheetah underscores the practical capability of their control architecture. Importantly, the authors demonstrate an unprecedented running barrel roll with mid-air rotations on quadrupedal hardware, signaling a capacity to perform maneuvers beyond the current operational envelope.

Furthermore, the paper validates the accuracy and efficiency of the VWBC against traditional implementations. Through simulations and hardware experiments, the VWBC maintains constraints such as those imposed by friction cones, which are crucial for realistic robotic motion in dynamic environments.

This research offers compelling advancements for roboticists dedicated to enhancing the agility and dynamism of legged robots. The theoretical rigour in constraint handling, the innovative MPC formulation, and the seamless integration into whole-body control yield a framework ripe for further exploration. Potential future directions might involve extending this control structure to humanoids or deploying advanced dynamic maneuvers necessitating non-planar joint representations, enhancing versatility against diverse terrains, and possibly integrating adaptive complexity considerations to tackle scenarios with unforeseen environmental interactions or errors in contact timings.

Youtube Logo Streamline Icon: https://streamlinehq.com