Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust covariance estimation and explainable outlier detection for matrix-valued data (2403.03975v2)

Published 6 Mar 2024 in stat.ME and stat.CO

Abstract: This work introduces the Matrix Minimum Covariance Determinant (MMCD) method, a novel robust location and covariance estimation procedure designed for data that are naturally represented in the form of a matrix. Unlike standard robust multivariate estimators, which would only be applicable after a vectorization of the matrix-variate samples leading to high-dimensional datasets, the MMCD estimators account for the matrix-variate data structure and consistently estimate the mean matrix, as well as the rowwise and columnwise covariance matrices in the class of matrix-variate elliptical distributions. Additionally, we show that the MMCD estimators are matrix affine equivariant and achieve a higher breakdown point than the maximal achievable one by any multivariate, affine equivariant location/covariance estimator when applied to the vectorized data. An efficient algorithm with convergence guarantees is proposed and implemented. As a result, robust Mahalanobis distances based on MMCD estimators offer a reliable tool for outlier detection. Additionally, we extend the concept of Shapley values for outlier explanation to the matrix-variate setting, enabling the decomposition of the squared Mahalanobis distances into contributions of the rows, columns, or individual cells of matrix-valued observations. Notably, both the theoretical guarantees and simulations show that the MMCD estimators outperform robust estimators based on vectorized observations, offering better computational efficiency and improved robustness. Moreover, real-world data examples demonstrate the practical relevance of the MMCD estimators and the resulting robust Shapley values.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube