Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Optical and spin properties of nitrogen vacancy centers formed along the tracks of high energy heavy ions (2403.03570v2)

Published 6 Mar 2024 in quant-ph and hep-ex

Abstract: Exposure of matter to high energy, heavy ions induces defects along the trajectories of the ions through electronic and nuclear energy loss processes. Defects, including color centers, can recombine or form along latent damage tracks in many materials, such as insulators and semiconductors. Latent tracks in diamond were only recently observed. Here, we report on color center formation in diamond along the latent tracks of 1 GeV gold and uranium ions. Using depth-resolved photoluminescence, we observe direct formation of single vacancy related color centers (GR1-centers) along the ion tracks. Mobile vacancies can form NV-centers with native nitrogen atoms during thermal annealing. Molecular dynamics simulations show that isolated vacancies and vacancy clusters form through electronic stopping processes, leading to color center formation along ion trajectories from the sample surface to a depth of about 25 microns. We further report on the creation of individually isolated quasi-1D chains of NV-centers by using 1 GeV Au ions with a dilute fluence. The individual 1D NV-chains appear as isolated bright luminescence strings and present competitive electron spin properties compared to a background of NV-centers. Such spin textures can be explored as building blocks for applications in quantum information processing and quantum sensing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky,  and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on progress in physics 77, 056503 (2014).
  2. J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham,  and R. L. Walsworth, “Sensitivity optimization for nv-diamond magnetometry,” Reviews of Modern Physics 92, 015004 (2020).
  3. T. Zhang, G. Pramanik, K. Zhang, M. Gulka, L. Wang, J. Jing, F. Xu, Z. Li, Q. Wei, P. Cigler, et al., “Toward quantitative bio-sensing with nitrogen–vacancy center in diamond,” ACS sensors 6, 2077–2107 (2021).
  4. K.-M. C. Fu, G. Z. Iwata, A. Wickenbrock,  and D. Budker, “Sensitive magnetometry in challenging environments,” AVS Quantum Science 2, 044702 (2020).
  5. S. Bakhshandeh, “Quantum sensing goes bio,” Nature Reviews Materials 7, 254–254 (2022).
  6. G.-Q. Liu, R.-B. Liu,  and Q. Li, “Nanothermometry with enhanced sensitivity and enlarged working range using diamond sensors,” Accounts of Chemical Research 56, 95–105 (2023).
  7. F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer, P. Neumann, F. Jelezko,  and J. Wrachtrup, “Room-temperature entanglement between single defect spins in diamond,” Nature Physics 9, 139–143 (2013).
  8. A. Jarmola, V. Acosta, K. Jensen, S. Chemerisov,  and D. Budker, “Temperature-and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond,” Physical review letters 108, 197601 (2012).
  9. E. Bauch, C. A. Hart, J. M. Schloss, M. J. Turner, J. F. Barry, P. Kehayias, S. Singh,  and R. L. Walsworth, “Ultralong dephasing times in solid-state spin ensembles via quantum control,” Physical Review X 8, 031025 (2018).
  10. T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski,  and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature nanotechnology 9, 171–176 (2014).
  11. G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. Du, P. Neumann, et al., “Quantum error correction in a solid-state hybrid spin register,” Nature 506, 204–207 (2014).
  12. X. Rong, J. Geng, F. Shi, Y. Liu, K. Xu, W. Ma, F. Kong, Z. Jiang, Y. Wu,  and J. Du, “Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions,” Nature communications 6, 8748 (2015).
  13. Y. Wang, F. Dolde, J. Biamonte, R. Babbush, V. Bergholm, S. Yang, I. Jakobi, P. Neumann, A. Aspuru-Guzik, J. D. Whitfield, et al., “Quantum simulation of helium hydride cation in a solid-state spin register,” ACS nano 9, 7769–7774 (2015).
  14. S. Pezzagna and J. Meijer, “Quantum computer based on color centers in diamond,” Applied Physics Reviews 8, 011308 (2021).
  15. B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. Vermeulen, R. N. Schouten, C. Abellán, et al., “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
  16. T. Tsuji, H. Ishiwata, T. Sekiguchi, T. Iwasaki,  and M. Hatano, “High growth rate synthesis of diamond film containing perfectly aligned nitrogen-vacancy centers by high-power density plasma cvd,” Diamond and Related Materials 123, 108840 (2022).
  17. S. Greengard, “Qubit devices inch toward reality,” Communications of the ACM 64, 11–13 (2021).
  18. M. Hamilton and L. Nguyen, “Heterogeneous integration technologies for scaled quantum information processing systems,” IEEE EPS eNews  (2023).
  19. R. E. Lake, A. Persaud, C. Christian, E. S. Barnard, E. M. Chan, A. A. Bettiol, M. Tomut, C. Trautmann,  and T. Schenkel, “Direct formation of nitrogen-vacancy centers in nitrogen doped diamond along the trajectories of swift heavy ions,” Applied Physics Letters 118, 084002 (2021).
  20. S. Onoda, K. Tatsumi, M. Haruyama, T. Teraji, J. Isoya, W. Kada, T. Ohshima,  and O. Hanaizumi, “Diffusion of vacancies created by high-energy heavy ion strike into diamond,” physica status solidi (a) 214, 1700160 (2017).
  21. S. Onoda, M. Haruyama, T. Teraji, J. Isoya, W. Kada, O. Hanaizumi,  and T. Ohshima, “New application of nv centers in cvd diamonds as a fluorescent nuclear track detector,” physica status solidi (a) 212, 2641–2644 (2015).
  22. S. Bose, “Quantum communication through an unmodulated spin chain,” Physical review letters 91, 207901 (2003).
  23. M. Akselrod and J. Kouwenberg, “Fluorescent nuclear track detectors–review of past, present and future of the technology,” Radiation Measurements 117, 35–51 (2018).
  24. M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips,  and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Science and Technology 6, 024011 (2021).
  25. J. Liu, H. V. Muinos, K. Nordlund,  and F. Djurabekova, “Molecular dynamics simulation of the effects of swift heavy ion irradiation on multilayer graphene and diamond-like carbon,” Applied Surface Science 527, 146495 (2020).
  26. J. Cajzl, P. Nekvindová, A. Macková, P. Malinskỳ, J. Oswald, Z. Remeš, M. Varga, A. Kromka, B. Akhetova, R. Böttger, et al., “Erbium luminescence centres in single-and nano-crystalline diamond—effects of ion implantation fluence and thermal annealing,” Micromachines 9, 316 (2018).
  27. J. B. James Ziegler, M.D. Ziegler, “Softerware website of the stopping and range of ions in matter: http://www.srim.org/index.htm,”  (2008).
  28. S. Subedi, V. Fedorov, S. Mirov,  and M. Markham, “Spectroscopy of gr1 centers in synthetic diamonds,” Optical Materials Express 11, 757–765 (2021).
  29. J. Jeske, D. W. Lau, X. Vidal, L. P. McGuinness, P. Reineck, B. C. Johnson, M. W. Doherty, J. C. McCallum, S. Onoda, F. Jelezko, et al., “Stimulated emission from nitrogen-vacancy centres in diamond,” Nature communications 8, 14000 (2017).
  30. M. Solà-Garcia, S. Meuret, T. Coenen,  and A. Polman, “Electron-induced state conversion in diamond nv centers measured with pump–probe cathodoluminescence spectroscopy,” ACS photonics 7, 232–240 (2019).
  31. T. Lühmann, J. Meijer,  and S. Pezzagna, “Charge-assisted engineering of color centers in diamond,” physica status solidi (a) 218, 2000614 (2021).
  32. J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” Physical review B 39, 5566 (1989).
  33. H. Amekura, A. Chettah, K. Narumi, A. Chiba, Y. Hirano, K. Yamada, S. Yamamoto, A. Leino, F. Djurabekova, K. Nordlund, et al., “Latent ion tracks were finally observed in diamond,” Nature Communications 15, 1786 (2024).
  34. Z. Wang, C. Dufour, E. Paumier,  and M. Toulemonde, “The se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process,” Journal of Physics: Condensed Matter 6, 6733 (1994).
  35. T. Schenkel, A. Barnes, A. Hamza, D. Schneider, J. Banks,  and B. Doyle, “Synergy of electronic excitations and elastic collision spikes in sputtering of heavy metal oxides,” Physical review letters 80, 4325 (1998).
  36. R. Fischer, A. Jarmola, P. Kehayias,  and D. Budker, “Optical polarization of nuclear ensembles in diamond,” Physical Review B 87, 125207 (2013).
  37. B. Smeltzer, L. Childress,  and A. Gali, “13c hyperfine interactions in the nitrogen-vacancy centre in diamond,” New Journal of Physics 13, 025021 (2011).
  38. D. B. Bucher, D. P. Aude Craik, M. P. Backlund, M. J. Turner, O. Ben Dor, D. R. Glenn,  and R. L. Walsworth, “Quantum diamond spectrometer for nanoscale nmr and esr spectroscopy,” Nature Protocols 14, 2707–2747 (2019).
  39. O. R. Rubinas, V. Vorobyov, V. Soshenko, S. Bolshedvorskii, V. Sorokin, A. Smolyaninov, V. Vins, A. Yelisseyev,  and A. Akimov, “Spin properties of nv centers in high-pressure, high-temperature grown diamond,” Journal of Physics Communications 2, 115003 (2018).
  40. Y. Mindarava, R. Blinder, C. Laube, W. Knolle, B. Abel, C. Jentgens, J. Isoya, J. Scheuer, J. Lang, I. Schwartz, et al., “Efficient conversion of nitrogen to nitrogen-vacancy centers in diamond particles with high-temperature electron irradiation,” Carbon 170, 182–190 (2020).
  41. F. Feng, W. Zhang, J. Zhang, L. Lou, W. Zhu,  and G. Wang, “Optimizing the density of nitrogen implantation for generating high-density nv center ensembles for quantum sensing,” The European Physical Journal D 73, 1–6 (2019).
  42. P. Deák, B. Aradi, M. Kaviani, T. Frauenheim,  and A. Gali, “Formation of nv centers in diamond: A theoretical study based on calculated transitions and migration of nitrogen and vacancy related defects,” Physical review B 89, 075203 (2014).
  43. C. Li, Q. Zhang, N. Zhou, C. Zhang,  and Z. Yi, “Impacts of nitrogen concentration and electron irradiation fluence on the formation of nitrogen-vacancy defects in diamond,” Diamond and Related Materials 132, 109623 (2023).
  44. C. Rycroft, “Voro++: A three-dimensional voronoi cell library in c++,” Tech. Rep. (Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2009).
  45. A. Stukowski, “Visualization and analysis of atomistic simulation data with ovito–the open visualization tool,” Modelling and simulation in materials science and engineering 18, 015012 (2009).
  46. E. Kobetich and R. Katz, “Energy deposition by electron beams and δ𝛿\deltaitalic_δ rays,” Physical review 170, 391 (1968).
  47. Z. Chunxiang, D. Dunn,  and R. Katz, “Radial distribution of dose and cross-sections for the inactivation of dry enzymes and viruses,” Radiation Protection Dosimetry 13, 215–218 (1985).
  48. A. Leino, S. Daraszewicz, O. H. Pakarinen, K. Nordlund,  and F. Djurabekova, “Atomistic two-temperature modelling of ion track formation in silicon dioxide,” Europhysics Letters 110, 16004 (2015).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com