Foot Shape-Dependent Resistive Force Model for Bipedal Walkers on Granular Terrains (2403.03460v1)
Abstract: Legged robots have demonstrated high efficiency and effectiveness in unstructured and dynamic environments. However, it is still challenging for legged robots to achieve rapid and efficient locomotion on deformable, yielding substrates, such as granular terrains. We present an enhanced resistive force model for bipedal walkers on soft granular terrains by introducing effective intrusion depth correction. The enhanced force model captures fundamental kinetic results considering the robot foot shape, walking gait speed variation, and energy expense. The model is validated by extensive foot intrusion experiments with a bipedal robot. The results confirm the model accuracy on the given type of granular terrains. The model can be further integrated with the motion control of bipedal robotic walkers.
- J. Aguilar, T. Zhang, F. Qian, M. Kingsbury, B. McInroe, N. Mazouchova, C. Li, R. Maladen, C. Gong, M. Travers, R. L. Hatton, H. Choset, P. B. Umbanhowar, and D. I. Goldman, “A review on locomotion robophysics: The study of movement at the intersection of robotics, soft matter and dynamical systems,” Rep. Prog. Phys., vol. 79, 2016, article 110001.
- S. Godon, M. Kruusmaa, and A. Ristolainen, “Maneuvering on non-Newtonian fluidic terrain: A survey of animal and bio-inspired robot locomotion techniques on soft yielding grounds,” Front. Robotics AI, vol. 10, 2023, article 1113881.
- S. Agarwal, A. Karsai, D. I. Goldman, and K. Kamrin, “Surprising simplicity in the modeling of dynamic granular intrusion,” Sci. Adv., vol. 7, 2021, article eabe0631.
- L. Ding, H. Gao, Z. Deng, J. Song, Y. Liu, G. Liu, and K. Iagnemma, “Foot–terrain interaction mechanics for legged robots: Modeling and experimental validation,” Int. J. Robot. Res., vol. 32, no. 13, pp. 1585–1606, 2013.
- C. Li, T. Zhang, and D. I. Goldman, “A terradynamics of legged locomotion on granular media,” Science, vol. 339, pp. 1408–1412, 2013.
- L. Xu, S. Zhang, N. Jiang, and R. Xu, “A hybrid force model to estimate the dynamics of curved legs in granular material,” J. Terramech., vol. 59, pp. 59–70, 2015.
- L. K. Treers, C. Cao, and H. S. Stuart, “Granular resistive force theory implementation for three-dimensional trajectories,” IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 1887–1894, 2021.
- L. Huang, J. Zhu, Y. Yuan, and Y. Yin, “A dynamic resistive force model for designing mobile robot in granular media,” IEEE Robot. Automat. Lett., vol. 7, no. 2, pp. 5357–5364, 2022.
- S. Agarwal, “Reduced-order modeling of granular intrusions driven by continuum approaches,” Ph.D. dissertation, Dept. Mech. Eng., Mass. Inst. Tech., Cambridge, MA, 2022.
- A. Vanderkop, N. Kottege, T. Peynot, and P. Corke, “A novel model of interaction dynamics between legged robots and deformable terrain,” in Proc. IEEE Int. Conf. Robot. Autom., Philadelphia, PA, 2022, pp. 6635–6641.
- H. Kolvenbach, C. Bärtschi, L. Wellhausen, R. Grandia, and M. Hutter, “Haptic inspection of planetary soils with legged robots,” IEEE Robot. Automat. Lett., vol. 4, no. 2, pp. 1626–1632, 2019.
- S. Godon, A. Ristolainen, and M. Kruusmaa, “An insight on mud behavior upon stepping,” IEEE Robot. Automat. Lett., vol. 7, no. 4, pp. 11 039–11 046, 2022.
- C. Yang, L. Ding, K. Wang, R. Song, D. Tang, H. Gao, and Z. Deng, “The effects of walking speed and hardness of terrain on the foot-terrain interaction and driving torque for planar human walking,” IEEE Access, vol. 7, pp. 56 174–56 189, 2019.
- F. P. Svenningsena, M. de Zeea, and A. S. Oliveirab, “The effect of shoe and floor characteristics on walking kinematics,” Hum. Movement Sci., vol. 66, pp. 63–72, 2019.
- T. M. Lejeune, P. A. Willems, and N. C. Heglund, “Mechanics and energetics of human locomotion on sand,” J. Exp. Biol., vol. 201, pp. 2071–2080, 1998.
- T. Zhang, F. Qian, C. Li, P. Masarati, A. M. Hoover, P. Birkmeyer, A. Pullin, R. S. Fearing, and D. I. Goldman, “Ground fluidization promotes rapid running of a lightweight robot,” Int. J. Robot. Res., vol. 32, no. 7, pp. 859–869, 2013.
- S. Gart, R. Alicea, W. Gao, J. Pusey, J. V. Nicholson, and J. E. Clark, “Legged locomotion in resistive terrains,” Bioinsp. Biomim., vol. 16, 2021, article 025001.
- L. Ding, P. Xu, Z. Li, R. Zhou, H. Gao, Z. Deng, and G. Liu, “Pressing and rubbing: Physics-informed features facilitate haptic terrain classification for legged robots,” IEEE Robot. Automat. Lett., vol. 7, no. 3, pp. 5990–5997, 2022.
- X. Xiong, A. D. Ames, and D. I. Goldman, “A stability region criterion for flat-footed bipedal walking on deformable granular terrain,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Vancouver, Canada, 2017, pp. 4552–4559.
- X. Chen, J. Yi, and H. Wang, “Energy efficient foot-shape design for bipedal walkers on granular terrain,” in Proc. Model., Est. Control Conf., Lake Tahoe, USA, 2023, pp. 601–606.
- P. E. Schiebel, H. C. Astley, J. M. Rieser, S. Agarwal, C. Hubicki, A. M. Hubbard, K. Diaz, J. R. Mendelson III, K. Kamrin, and D. I. Goldman, “Mitigating memory effects during undulatory locomotion on hysteretic materials,” Elife, vol. 9, 2020, article e51412.
- K. Chen, M. Trkov, J. Yi, Y. Zhang, T. Liu, and D. Song, “A robotic bipedal model for human walking with slips,” in Proc. IEEE Int. Conf. Robot. Autom., Seattle, Washington, 2015, pp. 6301–6306.
- M. Trkov, K. Chen, and J. Yi, “Bipedal model and hybrid zero dynamics of human walking with foot slip,” ASME J. Comput. Nonlinear Dyn., vol. 14, no. 10, 2019, article 101002.
- M. Trkov, K. Chen, J. Yi, and T. Liu, “Inertial sensor-based slip detection in human walking,” IEEE Trans. Automat. Sci. Eng., vol. 16, no. 3, pp. 1399–1411, 2019.
- M. Mihalec and J. Yi, “Balance gait controller for a bipedal robotic walker with foot slip,” IEEE/ASME Trans. Mechatronics, vol. 28, no. 4, pp. 2012–2019, 2023.
- C. H. Rodman and A. E. Martin, “Developing equations of motion for a planar biped walker with nonuniform foot shape,” in Proc. Model., Est. Control Conf., Austin, TX, 2021, pp. 455–462.