Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Reduced-Order Resistive Force Model for Robotic Foot-Mud Interactions (2403.02617v1)

Published 5 Mar 2024 in cs.RO

Abstract: Legged robots are well-suited for broad exploration tasks in complex environments with yielding terrain. Understanding robotic foot-terrain interactions is critical for safe locomotion and walking efficiency for legged robots. This paper presents a reduced-order resistive-force model for robotic-foot/mud interactions. We focus on vertical robot locomotion on mud and propose a visco-elasto-plastic analog to model the foot/mud interaction forces. Dynamic behaviors such as mud visco-elasticity, withdrawing cohesive suction, and yielding are explicitly discussed with the proposed model. Besides comparing with dry/wet granular materials, mud intrusion experiments are conducted to validate the force model. The dependency of the model parameter on water content and foot velocity is also studied to reveal in-depth model properties under various conditions. The proposed force model potentially provides an enabling tool for legged robot locomotion and control on muddy terrain.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. J. Aguilar, T. Zhang, F. Qian, M. Kingsbury, B. McInroe, N. Mazouchova, C. Li, R. Maladen, C. Gong, M. Travers, R. L. Hatton, H. Choset, P. B. Umbanhowar, and D. I. Goldman, “A review on locomotion robophysics: The study of movement at the intersection of robotics, soft matter and dynamical systems,” Rep. Prog. Phys., vol. 79, 2016, article 110001.
  2. S. Godon, M. Kruusmaa, and A. Ristolainen, “Maneuvering on non-newtonian fluidic terrain: a survey of animal and bio-inspired robot locomotion techniques on soft yielding grounds,” Front. Robot. AI, vol. 10, 2023, article 1113881.
  3. C. Li, T. Zhang, and D. I. Goldman, “A terradynamics of legged locomotion on granular media,” Science, vol. 339, no. 6126, pp. 1408–1412, 2013.
  4. T. Zhang and D. I. Goldman, “The effectiveness of resistive force theory in granular locomotion,” Phys. Fluids, vol. 26, no. 10, 2014, article 101308.
  5. L. K. Treers, C. Cao, and H. S. Stuart, “Granular resistive force theory implementation for three-dimensional trajectories,” IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 1887–1894, 2021.
  6. L. Huang, J. Zhu, Y. Yuan, and Y. Yin, “A dynamic resistive force model for designing mobile robot in granular media,” IEEE Robot. Automat. Lett., vol. 7, no. 2, pp. 5357–5364, 2022.
  7. A. Hosoi and D. I. Goldman, “Beneath our feet: strategies for locomotion in granular media,” Annu. Rev. Fluid Mech., vol. 47, pp. 431–453, 2015.
  8. S. Jung, A. G. Winter, and A. Hosoi, “Dynamics of digging in wet soil,” Int. J. Nonlinear Mech., vol. 46, no. 4, pp. 602–606, 2011.
  9. T. M. Huh, C. Cao, J. Aderibigbe, D. Moon, and H. S. Stuart, “Walk-burrow-tug: Legged anchoring analysis using rft-based granular limit surfaces,” IEEE Robot. Automat. Lett., vol. 8, no. 6, pp. 3796–3803, 2023.
  10. X. Xiong, A. D. Ames, and D. I. Goldman, “A stability region criterion for flat-footed bipedal walking on deformable granular terrain,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Vancouver, Canada, 2017, pp. 4552–4559.
  11. X. Chen, J. Yi, and H. Wang, “Energy efficient foot-shape design for bipedal walkers on granular terrain,” IFAC-PapersOnLine, vol. 56, no. 3, pp. 601–606, 2023.
  12. X. Chen, A. Anikode, J. Yi, and L. Tao, “Foot shape-dependent resistive force model for bipedal walkers on granular terrains,” in Proc. IEEE Int. Conf. Robot. Autom., Yokohama, Japan, 2024.
  13. H. Bagheri, V. Taduru, S. Panchal, S. White, and H. Marvi, “Animal and robotic locomotion on wet granular media,” in Proc. Int. Conf. Living Machines: Biomimet. Biohybrid Syst., Stanford, CA, 2017, pp. 13–24.
  14. H. Bagheri, V. Jayanetti, H. R. Burch, C. E. Brenner, B. R. Bethke, and H. Marvi, “Mechanics of bipedal and quadrupedal locomotion on dry and wet granular media,” J. Field Robot, vol. 40, no. 2, pp. 161–172, 2023.
  15. X. Ma, G. Wang, K. Liu, X. Chen, J. Wang, B. Pan, and L. Wang, “Granular resistive force theory extension for saturated wet sand ground,” Machines, vol. 10, no. 9, 2022, article 721.
  16. T. Hossain and P. Rognon, “Drag force in immersed granular materials,” Phys. Rev. Fluids, vol. 5, no. 5, 2020, article 054306.
  17. P. Coussot and J. M. Piau, “On the behavior of fine mud suspensions,” Rheol. Acta, vol. 33, pp. 175–184, 1994.
  18. W. H. Herschel and R. Bulkley, “Measurement of consistency as applied to rubber-benzene solutions,” Kolloid-Zeitschrift, no. 39, pp. 291–298, 1926.
  19. L. Bocquet, A. Colin, and A. Ajdari, “Kinetic theory of plastic flow in soft glassy materials,” Phys. Rev. Lett., vol. 103, no. 3, 2009, article 036001.
  20. M. Caggioni, V. Trappe, and P. T. Spicer, “Variations of the herschel–bulkley exponent reflecting contributions of the viscous continuous phase to the shear rate-dependent stress of soft glassy materials,” J. Rheol., vol. 64, no. 2, pp. 413–422, 2020.
  21. R. Ran, S. Pradeep, S. Kosgodagan Acharige, B. C. Blackwell, C. Kammer, D. J. Jerolmack, and P. E. Arratia, “Understanding the rheology of kaolinite clay suspensions using bayesian inference,” J. Rheol., vol. 67, no. 1, pp. 241–252, 2023.
  22. X. Liang, M. Xu, L. Xu, P. Liu, X. Ren, Z. Kong, J. Yang, and S. Zhang, “The amphihex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Vilamoura, Algarve, Portugal, 2012, pp. 3667–3672.
  23. X. Ren, X. Liang, Z. Kong, M. Xu, R. Xu, and S. Zhang, “An experimental study on the locomotion performance of elliptic-curve leg in muddy terrain,” in Proc. IEEE/ASME Int. Conf. Adv. Intelli. Mechatronics, Wollongong, Australia, 2013, pp. 518–523.
  24. S. Liu, B. Huang, and F. Qian, “Adaptation of flipper-mud interactions enables effective terrestrial locomotion on muddy substrates,” IEEE Robot. Automat. Lett., vol. 8, no. 12, pp. 7978–7985, 2023.
  25. S. Godon, A. Ristolainen, and M. Kruusmaa, “An insight on mud behavior upon stepping,” IEEE Robot. Automat. Lett., vol. 7, no. 4, pp. 11 039–11 046, 2022.
  26. R. Kostynick, H. Matinpour, S. Pradeep, S. Haber, A. Sauret, E. Meiburg, T. Dunne, P. Arratia, and D. Jerolmack, “Rheology of debris flow materials is controlled by the distance from jamming,” Proc. Nat. Acad. Sci., vol. 119, no. 44, 2022, article e2209109119.
  27. F. Qian, T. Zhang, W. Korff, P. B. Umbanhowar, R. J. Full, and D. I. Goldman, “Principles of appendage design in robots and animals determining terradynamic performance on flowable ground,” Bioinspir. Biomim., vol. 10, no. 5, 2015, article 056014.
  28. F. Q. Potiguar and Y. Ding, “Lift and drag in intruders moving through hydrostatic granular media at high speeds,” Phys. Rev. E, vol. 88, no. 1, 2013, article 012204.
  29. M. Mihalec, M. Trkov, and J. Yi, “Balance recoverability and control of bipedal walkers with foot slip,” ASME J. Biomech. Eng., vol. 144, no. 5, 2022, article 051012.
  30. M. Mihalec and J. Yi, “Balance gait controller for a bipedal robotic walker with foot slip,” IEEE/ASME Trans. Mechatronics, vol. 28, no. 4, pp. 2012–2019, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.