Deterministic Bethe state preparation (2403.03283v3)
Abstract: We present an explicit quantum circuit that prepares an arbitrary $U(1)$-eigenstate on a quantum computer, including the exact eigenstates of the spin-1/2 XXZ quantum spin chain with either open or closed boundary conditions. The algorithm is deterministic, does not require ancillary qubits, and does not require QR decompositions. The circuit prepares such an $L$-qubit state with $M$ down-spins using $\binom{L}{M}-1$ multi-controlled rotation gates and $2M(L-M)$ CNOT-gates.
- J. Preskill, “Quantum computing 40 years later,” in Feynman Lectures on Computation, A. J. G. Hey, ed. Taylor & Francis Group, 2021. arXiv:2106.10522 [quant-ph].
- S. Aaronson, “How Much Structure Is Needed for Huge Quantum Speedups?,” in 28th Solvay Physics Conference. 2022. arXiv:2209.06930 [quant-ph].
- T. Giamarchi, Quantum Physics in One Dimension. Oxford University Press, 2004.
- R. J. Baxter, Exactly Solved Models in Statistical Mechanics. Academic Press, 1982.
- K. Mallick, “The exclusion process: A paradigm for non-equilibrium behaviour,” Physica A Statistical Mechanics and its Applications 418 (Jan., 2015) 17–48, arXiv:1412.6258 [cond-mat.stat-mech].
- S. Gharibian and O. Parekh, “Almost optimal classical approximation algorithms for a quantum generalization of Max-Cut,” in Leibniz International Proceedings in Informatics, vol. 145, p. 31:1–31:17. 2019. arXiv:1909.08846 [quant-ph].
- H. Bethe, “On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain,” Z. Phys. 71 (1931) 205–226.
- M. Gaudin, “Boundary energy of a Bose gas in one dimension,” Phys. Rev. A 4 (1971) 386–394.
- M. Gaudin, La fonction d’onde de Bethe. Masson, 1983. English translation by J.-S. Caux, The Bethe wavefunction, CUP, 2014.
- F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter, and G. R. W. Quispel, “Surface exponents of the quantum XXZ, Ashkin-Teller and Potts models,” J. Phys. A20 (1987) 6397.
- L. D. Faddeev and L. A. Takhtajan, “Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model,” Zap. Nauchn. Semin. 109 (1981) 134–178.
- Cambridge University Press, 1993.
- E. K. Sklyanin, “Boundary conditions for integrable quantum systems,” J. Phys. A21 (1988) 2375.
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cambridge University Press, 2019.
- R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Simulating physical phenomena by quantum networks,” Phys. Rev. A 65 no. 4, (2002) , arXiv:0108146 [quant-ph].
- D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer, “Solving strongly correlated electron models on a quantum computer,” Phys. Rev. A 92 no. 6, (2015) , arXiv:1506.05135 [quant-ph].
- R. I. Nepomechie, “Bethe ansatz on a quantum computer?,” Quant. Inf. Comp. 21 (2021) 255–265, arXiv:2010.01609 [quant-ph].
- J. S. Van Dyke, G. S. Barron, N. J. Mayhall, E. Barnes, and S. E. Economou, “Preparing Bethe Ansatz Eigenstates on a Quantum Computer,” PRX Quantum 2 (2021) 040329, arXiv:2103.13388 [quant-ph].
- J. S. Van Dyke, E. Barnes, S. E. Economou, and R. I. Nepomechie, “Preparing exact eigenstates of the open XXZ chain on a quantum computer,” J. Phys. A 55 no. 5, (2022) 055301, arXiv:2109.05607 [quant-ph].
- W. Li, M. Okyay, and R. I. Nepomechie, “Bethe states on a quantum computer: success probability and correlation functions,” J. Phys. A 55 no. 35, (2022) 355305, arXiv:2201.03021 [quant-ph].
- A. Sopena, M. H. Gordon, D. García-Martín, G. Sierra, and E. López, “Algebraic Bethe Circuits,” Quantum 6 (2022) 796, arXiv:2202.04673 [quant-ph].
- R. Ruiz, A. Sopena, M. H. Gordon, G. Sierra, and E. López, “The Bethe Ansatz as a Quantum Circuit,” J. Phys. Conf. Ser. 2667 no. 1, (2023) 012022, arXiv:2309.14430 [quant-ph].
- A. Bärtschi and S. Eidenbenz, “Deterministic preparation of Dicke states,” Lecture Notes in Computer Science (2019) 126–139, arXiv:1904.07358 [quant-ph].
- R. I. Nepomechie and D. Raveh, “Qudit Dicke state preparation,” Quantum Inf. Comp. 24 (2024) 0037–0056, arXiv:2301.04989 [quant-ph].
- D. Raveh and R. I. Nepomechie, “q𝑞qitalic_q-analog qudit Dicke states,” J. Phys. A 57 (2024) 065302, arXiv:2308.08392 [quant-ph].
- R. I. Nepomechie, F. Ravanini, and D. Raveh, “Spin-s Dicke states and their preparation,” arXiv:2402.03233 [quant-ph].
- R. H. Dicke, “Coherence in Spontaneous Radiation Processes,” Phys. Rev. 93 (1954) 99–110.
- Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023.
- M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Transformation of quantum states using uniformly controlled rotations,” Quant. Inf. Comput. 5 no. 6, (2005) 467–473, arXiv:quant-ph/0407010.
- Academic Press, 1969.
- H. J. Lipkin, N. Meshkov, and A. J. Glick, “Validity of many-body approximation methods for a solvable model. 1. Exact solutions and perturbation theory,” Nucl. Phys. 62 (1965) 188–198.
- F. C. Alcaraz, M. N. Barber, and M. T. Batchelor, “Conformal Invariance, the XXZ Chain and the Operator Content of Two-dimensional Critical Systems,” Annals Phys. 182 (1988) 280–343.
- N. Crampé, E. Ragoucy, and L. Alonzi, “Coordinate Bethe Ansatz for Spin s XXX Model,” SIGMA 7 (2011) 006, arXiv:1009.0408 [math-ph].
- B. Sutherland, “A General Model for Multicomponent Quantum Systems,” Phys. Rev. B 12 (1975) 3795–3805.
- B. Sutherland, “An introduction to the Bethe ansatz,” in Exactly Solvable Problems in Condensed Matter and Relativistic Field Theory, LNP v 242, B. Shastry, S. Jha, and V. Singh, eds., pp. 1–95. Springer, 2005.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.