Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Network Learning and Quantum Gravity (2403.03245v1)

Published 5 Mar 2024 in hep-th and cs.LG

Abstract: The landscape of low-energy effective field theories stemming from string theory is too vast for a systematic exploration. However, the meadows of the string landscape may be fertile ground for the application of machine learning techniques. Employing neural network learning may allow for inferring novel, undiscovered properties that consistent theories in the landscape should possess, or checking conjectural statements about alleged characteristics thereof. The aim of this work is to describe to what extent the string landscape can be explored with neural network-based learning. Our analysis is motivated by recent studies that show that the string landscape is characterized by finiteness properties, emerging from its underlying tame, o-minimal structures. Indeed, employing these results, we illustrate that any low-energy effective theory of string theory is endowed with certain statistical learnability properties. Consequently, several learning problems therein formulated, including interpolations and multi-class classification problems, can be concretely addressed with machine learning, delivering results with sufficiently high accuracy.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com