Rigor with Machine Learning from Field Theory to the Poincaré Conjecture (2402.13321v1)
Abstract: Machine learning techniques are increasingly powerful, leading to many breakthroughs in the natural sciences, but they are often stochastic, error-prone, and blackbox. How, then, should they be utilized in fields such as theoretical physics and pure mathematics that place a premium on rigor and understanding? In this Perspective we discuss techniques for obtaining rigor in the natural sciences with machine learning. Non-rigorous methods may lead to rigorous results via conjecture generation or verification by reinforcement learning. We survey applications of these techniques-for-rigor ranging from string theory to the smooth $4$d Poincar\'e conjecture in low-dimensional topology. One can also imagine building direct bridges between machine learning theory and either mathematics or theoretical physics. As examples, we describe a new approach to field theory motivated by neural network theory, and a theory of Riemannian metric flows induced by neural network gradient descent, which encompasses Perelman's formulation of the Ricci flow that was utilized to resolve the $3$d Poincar\'e conjecture.
- J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis “Highly accurate protein structure prediction with alphafold,” Nature 596 (Aug, 2021) 583–589.
- G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová “Machine learning and the physical sciences,” Rev. Mod. Phys. 91 (2019) no. 4, 045002 [1903.10563].
- F. Ruehle “Data science applications to string theory,” Phys. Rept. 839 (2020) 1–117.
- Y. He Machine Learning in Pure Mathematics and Theoretical Physics. G - Reference,Information and Interdisciplinary Subjects Series. World Scientific 2023.
- A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok “Synthesizing robust adversarial examples,” PMLR 80 (2018) [1707.07397].
- A. Athalye, N. Carlini, and D. Wagner “Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples,” in Proceedings of the 35th International Conference on Machine Learning, ICML 2018. July, 2018.
- A. Jacot, F. Gabriel, and C. Hongler “Neural tangent kernel: Convergence and generalization in neural networks,” in NeurIPS. 2018.
- J. Lee, L. Xiao, S. S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington “Wide neural networks of any depth evolve as linear models under gradient descent,” ArXiv abs/1902.06720 (2019).
- R. S. Hamilton “Three-manifolds with positive Ricci curvature,” Journal of Differential Geometry 17 (1982) no. 2, 255 – 306.
- G. Perelman “The entropy formula for the ricci flow and its geometric applications,” 2002.
- T. C. Hales “Developments in formal proofs,” Astérisque (2015) no. 367-368, Exp. No. 1086, x, 387–410.
- J. Alama, T. Heskes, D. Kühlwein, E. Tsivtsivadze, and J. Urban “Premise selection for mathematics by corpus analysis and kernel methods,” J. Automat. Reason. 52 (2014) no. 2, 191–213.
- J. C. Blanchette, D. Greenaway, C. Kaliszyk, D. Kühlwein, and J. Urban “A learning-based fact selector for Isabelle/HOL,” J. Automat. Reason. 57 (2016) no. 3, 219–244.
- Y. Nagashima “Simple dataset for proof method recommendation in isabelle/hol (dataset description),” arXiv (2020) [2004.10667].
- B. Piotrowski, R. F. Mir, and E. Ayers “Machine-learned premise selection for lean,” arXiv (2023) [2304.00994].
- J. Carifio, J. Halverson, D. Krioukov, and B. D. Nelson “Machine Learning in the String Landscape,” JHEP 09 (2017) 157 [1707.00655].
- Y.-H. He “Deep-Learning the Landscape,” arXiv (6, 2017) [1706.02714].
- D. Krefl and R.-K. Seong “Machine Learning of Calabi-Yau Volumes,” Phys. Rev. D 96 (2017) no. 6, 066014 [1706.03346].
- F. Ruehle “Evolving neural networks with genetic algorithms to study the String Landscape,” JHEP 08 (2017) 038 [1706.07024].
- A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev, R. Tanburn, P. Battaglia, C. Blundell, A. Juhász, M. Lackenby, G. Williamson, D. Hassabis, and P. Kohli “Advancing mathematics by guiding human intuition with ai,” Nature 600 (Dec, 2021) 70–74.
- J. Craven, V. Jejjala, and A. Kar “Disentangling a deep learned volume formula,” JHEP 06 (2021) 040 [2012.03955].
- J. Craven, M. Hughes, V. Jejjala, and A. Kar “Learning knot invariants across dimensions,” SciPost Phys. 14 (2023) no. 2, Paper No. 021, 28.
- G. Brown, T. Coates, A. Corti, T. Ducat, L. Heuberger, and A. Kasprzyk “Computation and data in the classification of fano varieties,” 2022.
- S. Gukov and R.-K. Seong “Learning BPS spectra, to appear,” 2023.
- C. Mishra, S. R. Moulik, and R. Sarkar “Mathematical conjecture generation using machine intelligence,” 2023.
- D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis “Mastering the game of go without human knowledge,” Nature 550 (Oct, 2017) 354–359.
- D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis “Mastering chess and shogi by self-play with a general reinforcement learning algorithm,” 2017.
- D. Klaewer and L. Schlechter “Machine Learning Line Bundle Cohomologies of Hypersurfaces in Toric Varieties,” Phys. Lett. B 789 (2019) 438–443 [1809.02547].
- C. R. Brodie, A. Constantin, R. Deen, and A. Lukas “Topological Formulae for the Zeroth Cohomology of Line Bundles on del Pezzo and Hirzebruch Surfaces,” Compl. Manif. 8 (2021) no. 1, 223–229 [1906.08363].
- C. R. Brodie, A. Constantin, R. Deen, and A. Lukas “Index Formulae for Line Bundle Cohomology on Complex Surfaces,” Fortsch. Phys. 68 (2020) no. 2, 1900086 [1906.08769].
- C. R. Brodie, A. Constantin, R. Deen, and A. Lukas “Machine Learning Line Bundle Cohomology,” Fortsch. Phys. 68 (2020) no. 1, 1900087 [1906.08730].
- C. R. Brodie and A. Constantin “Cohomology Chambers on Complex Surfaces and Elliptically Fibered Calabi-Yau Three-folds,” arXiv (9, 2020) [2009.01275].
- M. Bies, M. Cvetič, R. Donagi, L. Lin, M. Liu, and F. Ruehle “Machine Learning and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory,” JHEP 01 (2021) 196 [2007.00009].
- M. C. Hughes “A neural network approach to predicting and computing knot invariants,” J. Knot Theory Ramifications 29 (2020) no. 3, 2050005, 20.
- S. Gukov, J. Halverson, C. Manolescu, and F. Ruehle “Searching for ribbons with machine learning,” arXiv (2023) [2304.09304].
- J. Hass, J. C. Lagarias, and N. Pippenger “The computational complexity of knot and link problems,” J. ACM 46 (1999) no. 2, 185–211.
- G. Kuperberg “Knottedness is in NP, modulo GRH,” Adv. Math. 256 (2014) 493–506.
- M. Lackenby “The efficient certification of knottedness and thurston norm,” Advances in Mathematics 387 (2021) 107796.
- S. Gukov, J. Halverson, F. Ruehle, and P. Sułkowski “Learning to unknot,” Machine Learning: Science and Technology 2 (apr, 2021) 025035.
- J. W. Alexander “A lemma on systems of knotted curves,” Proceedings of the National Academy of Sciences of the United States of America 9 (1923) no. 3, 93–95.
- S. J. Ri and P. Putrov “Graph Neural Networks and 3-dimensional topology,” Mach. Learn. Sci. Tech. 4 (2023) no. 3, 035026 [2305.05966].
- S. Gukov, J. Halverson, C. Manolescu, and F. Ruehle “An algorithm for finding ribbon bands.” ”https://github.com/ruehlef/ribbon” 2023.
- R. M. Neal BAYESIAN LEARNING FOR NEURAL NETWORKS. PhD thesis University of Toronto 1995.
- C. K. Williams “Computing with infinite networks,” in Advances in neural information processing systems pp. 295–301. 1997.
- G. Yang “Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes,” arXiv e-prints (Oct., 2019) arXiv:1910.12478 [1910.12478].
- J. Halverson, A. Maiti, and K. Stoner “Neural Networks and Quantum Field Theory,” Mach. Learn. Sci. Tech. 2 (2021) no. 3, 035002 [2008.08601].
- J. Halverson “Building quantum field theories out of neurons,” arXiv (2021) [2112.04527].
- M. Demirtas, J. Halverson, A. Maiti, M. D. Schwartz, and K. Stoner “Neural Network Field Theories: Non-Gaussianity, Actions, and Locality,” arXiv (7, 2023) [2307.03223].
- K. Osterwalder and R. Schrader “Axioms for euclidean green’s functions,” Communications in Mathematical Physics 31 (Jun, 1973) 83–112.
- Cambridge University Press 2022.
- A. Maiti, K. Stoner, and J. Halverson “Symmetry-via-Duality: Invariant Neural Network Densities from Parameter-Space Correlators,” arXiv (6, 2021) [2106.00694].
- J. Halverson and F. Ruehle “Metric flows with neural networks,” 2023.
- S.-T. Yau “On the ricci curvature of a compact kähler manifold and the complex monge-ampére equation, I,” Commun. Pure Appl. Math. 31 (1978) no. 3, 339–411.
- E. Calabi On Kähler Manifolds with Vanishing Canonical Class: pp. 78–89. Princeton University Press 2015.
- S. K. Donaldson “Some numerical results in complex differential geometry,” 2005.
- L. B. Anderson, M. Gerdes, J. Gray, S. Krippendorf, N. Raghuram, and F. Ruehle “Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning,” JHEP 05 (2021) 013 [2012.04656].
- M. R. Douglas, S. Lakshminarasimhan, and Y. Qi “Numerical Calabi-Yau metrics from holomorphic networks,” arXiv (12, 2020) [2012.04797].
- V. Jejjala, D. K. Mayorga Pena, and C. Mishra “Neural network approximations for Calabi-Yau metrics,” JHEP 08 (2022) 105 [2012.15821].
- M. Larfors, A. Lukas, F. Ruehle, and R. Schneider “Learning Size and Shape of Calabi-Yau Spaces,” in Fourth Workshop on Machine Learning and the Physical Sciences. 11, 2021. [2111.01436].
- M. Larfors, A. Lukas, F. Ruehle, and R. Schneider “Numerical metrics for complete intersection and Kreuzer–Skarke Calabi–Yau manifolds,” Mach. Learn. Sci. Tech. 3 (2022) no. 3, 035014 [2205.13408].
- M. Gerdes and S. Krippendorf “CYJAX: A package for Calabi-Yau metrics with JAX,” Mach. Learn. Sci. Tech. 4 (2023) no. 2, 025031 [2211.12520].
- G. Yang “Tensor programs ii: Neural tangent kernel for any architecture,” ArXiv abs/2006.14548 (2020).
- J. Cotler and S. Rezchikov “Renormalization group flow as optimal transport,” Physical Review D 108 (jul, 2023).
- D. S. Berman and M. S. Klinger “The Inverse of Exact Renormalization Group Flows as Statistical Inference,” arXiv (12, 2022) [2212.11379].