Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the computation of lattice sums without translational invariance (2403.03213v2)

Published 5 Mar 2024 in math.NA, cond-mat.str-el, cs.NA, and hep-lat

Abstract: This paper introduces a new method for the efficient computation of oscillatory multidimensional lattice sums in geometries with boundaries. Such sums are ubiquitous in both pure and applied mathematics, and have immediate applications in condensed matter physics and topological quantum physics. The challenge in their evaluation results from the combination of singular long-range interactions with the loss of translational invariance caused by the boundaries, rendering standard tools ineffective. Our work shows that these lattice sums can be generated from a generalization of the Riemann zeta function to multidimensional non-periodic lattice sums. We put forth a new representation of this zeta function together with a numerical algorithm that ensures exponential convergence across an extensive range of geometries. Notably, our method's runtime is influenced only by the complexity of the considered geometries and not by the number of particles, providing the foundation for efficient simulations of macroscopic condensed matter systems. We showcase the practical utility of our method by computing interaction energies in a three-dimensional crystal structure with $3\times 10{23}$ particles. Our method's accuracy is demonstrated through extensive numerical experiments. A reference implementation is provided online along with this article.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. “InAs-Al hybrid devices passing the topological gap protocol” In Physical Review B 107.24 APS, 2023, pp. 245423 URL: https://doi.org/10.1103/PhysRevB.107.245423
  2. T.M. Apostol “Introduction to Analytic Number Theory”, Undergraduate Texts in Mathematics Springer New York, 1998
  3. “Lattice Sums Then and Now”, Encyclopedia of Mathematics and its Applications Cambridge University Press, 2013 URL: https://doi.org/10.1017/CBO9781139626804
  4. “Measurement of the charge and current of magnetic monopoles in spin ice” In Nature 461.7266, 2009, pp. 956–959 URL: https://doi.org/10.1038/nature08500
  5. Steven T Bramwell and Michel JP Gingras “Spin ice state in frustrated magnetic pyrochlore materials” In Science 294.5546 American Association for the Advancement of Science, 2001, pp. 1495–1501 URL: https://doi.org/10.1126/science.1064761
  6. Steven T Bramwell and Mark J Harris “The history of spin ice” In J. Phys.: Condens. Matter 32.37 IOP Publishing, 2020, pp. 374010 URL: https://doi.org/10.1088/1361-648x/ab8423
  7. Andreas A Buchheit and Torsten Keßler “On the Efficient Computation of Large Scale Singular Sums with Applications to Long-Range Forces in Crystal Lattices” In J. Sci. Comput. 90.1 Springer, 2022, pp. 1–20 DOI: 10.1007/s10915-021-01731-5
  8. Andreas A Buchheit and Torsten Keßler “Singular Euler–Maclaurin expansion on multidimensional lattices” In Nonlinearity 35.7 IOP Publishing, 2022, pp. 3706
  9. “Exact Continuum Representation of Long-range Interacting Systems and Emerging Exotic Phases in Unconventional Superconductors” In arXiv preprint arXiv:2201.11101v3, 2023
  10. Andreas A. Buchheit and T. Keßler “GitHub release: Continuum representation 2.2”, 2023 URL: https://doi.org/10.5281/zenodo.7575976
  11. “Physics of long-range interacting systems” OUP Oxford, 2014
  12. C. Castelnovo, R. Moessner and S.L. Sondhi “Magnetic monopoles in spin ice” In Nature 451.7174, 2008, pp. 42–45 URL: https://doi.org/10.1038/nature06433
  13. Shukui Chen, Kirill Serkh and James Bremer “The adaptive Levin method” In arXiv preprint arXiv:2211.13400, 2022
  14. “On Epstein’s zeta function (I)” In Proceedings of the National Academy of Sciences 35.7 National Acad Sciences, 1949, pp. 371–374 URL: https://doi.org/10.1073/pnas.35.7.371
  15. R. Crandall “Unified algorithms for polylogarithm, L-series, and zeta variants” In Algorithmic Reflections: Selected Works PSIpress, 2012
  16. E Elizalde “Multidimensional extension of the generalized Chowla–Selberg formula” In Communications in mathematical physics 198.1 Springer, 1998, pp. 83–95
  17. Emilio Elizalde “Ten physical applications of spectral zeta functions” Springer, 2012
  18. O. Emersleben “Zetafunktionen und elektrostatische Gitterpotentiale. I” In Phys. Z 24, 1923, pp. 73–80
  19. O. Emersleben “Zetafunktionen und elektrostatische Gitterpotentiale. II” In Phys. Z 24, 1923, pp. 97–104
  20. P. Epstein “Zur Theorie allgemeiner Zetafunctionen” In Math. Ann. 56 Springer, 1903, pp. 615–644 URL: https://doi.org/10.1007/BF01444309
  21. P. Epstein “Zur Theorie allgemeiner Zetafunktionen. II” In Math. Ann. 63 Springer, 1906, pp. 205–216 URL: https://doi.org/10.1007/BF01449900
  22. S. Fey, S.C. Kapfer and K.P. Schmidt “Quantum criticality of two-dimensional quantum magnets with long-range interactions” In Phys. Rev. Lett. 122.1 APS, 2019, pp. 017203 URL: https://doi.org/10.1103/PhysRevLett.122.017203
  23. “The promise of spintronics for unconventional computing” In Journal of Magnetism and Magnetic Materials 521 Elsevier, 2021, pp. 167506
  24. Hongmin Gao, Frank Schlawin and Dieter Jaksch “Higgs mode stabilization by photoinduced long-range interactions in a superconductor” In Physical Review B 104.14 APS, 2021, pp. L140503 URL: https://doi.org/10.1103/PhysRevB.104.L140503
  25. “Generalized Functions” Academic Press, 1964
  26. Amparo Gil, Javier Segura and Nico M Temme “Efficient and accurate algorithms for the computation and inversion of the incomplete gamma function ratios” In SIAM Journal on Scientific Computing 34.6 SIAM, 2012, pp. A2965–A2981
  27. M. Glasser “The evaluation of lattice sums. I. Analytic procedures” In J. Math. Phys. 14.3 American Institute of Physics, 1973, pp. 409–413 URL: https://doi.org/10.1063/1.1666331
  28. M. Glasser “The evaluation of lattice sums. II. Number-theoretic approach” In J. Math. Phys. 14.6 American Institute of Physics, 1973, pp. 701–703
  29. Stephen W Hawking “Zeta function regularization of path integrals in curved spacetime” In Communications in Mathematical Physics 55 Springer, 1977, pp. 133–148 URL: https://doi.org/10.1007/BF01626516
  30. “On the evaluation of layer potentials close to their sources” In Journal of Computational Physics 227.5 Elsevier, 2008, pp. 2899–2921
  31. J. Horváth “Topological Vector Spaces and Distributions” Reprinted by Dover, 2012 Addision–Wesley Publications, 1966
  32. Steven G. Johnson “Faddeeva Package” Accessed: June 5, 2023, http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package, 2012
  33. Frans Lemeire “Bounds for condition numbers of triangular and trapezoid matrices” In BIT Numerical Mathematics 15.1 Springer, 1975, pp. 58–64
  34. “Majorana zero modes in superconductor–semiconductor heterostructures” In Nature Reviews Materials 3.5 Nature Publishing Group UK London, 2018, pp. 52–68 URL: https://doi.org/10.1038/s41578-018-0003-1
  35. “Theory of current-induced skyrmion dynamics close to a boundary” In Journal of Magnetism and Magnetic Materials 465 Elsevier, 2018, pp. 685–691
  36. “Bose-Einstein Condensates with 1/r1𝑟1/\mathit{r}1 / italic_r Interatomic Attraction: Electromagnetically Induced “Gravity”” In Phys. Rev. Lett. 84 American Physical Society, 2000, pp. 5687–5690 URL: https://doi.org/10.1103/PhysRevLett.84.5687
  37. “Skyrmion qubits: A new class of quantum logic elements based on nanoscale magnetization” In Phys. Rev. Lett. 127.6 APS, 2021, pp. 067201 URL: https://doi.org/10.1103/PhysRevLett.127.067201
  38. “Non-local propagation of correlations in quantum systems with long-range interactions” In Nature 511.7508, 2014, pp. 198–201 URL: https://doi.org/10.1038/nature13450
  39. Daniel Shanks “Calculation and applications of Epstein zeta functions” In Mathematics of Computation 29.129, 1975, pp. 271–287 URL: https://doi.org/10.1090/S0025-5718-1975-0409357-2
  40. “Is polynomial interpolation in the monomial basis unstable?” In arXiv preprint arXiv:2212.10519, 2022
  41. “Skyrmion-based artificial synapses for neuromorphic computing” In Nat. Electron. 3.3 Nature Publishing Group, 2020, pp. 148–155 URL: https://doi.org/10.1038/s41928-020-0385-0
  42. A. Terras “Harmonic Analysis on Symmetric Spaces and Applications I” Springer New York, 2012 URL: https://doi.org/10.1007/978-1-4612-5128-6
  43. Audrey A Terras “Bessel series expansions of the Epstein zeta function and the functional equation” In Transactions of the American Mathematical Society 183, 1973, pp. 477–486 URL: https://doi.org/10.1090/S0002-9947-1973-0323735-6
  44. F. Trèves “Topological Vector Spaces, Distributions and Kernels” Reprinted by Dover, 2006 Academic Press, 1967
  45. “Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition” In Nat. Commun. 8.1 Nature Publishing Group, 2017, pp. 1–10 URL: https://doi.org/10.1038/s41467-017-01785-w
  46. I.J. Zucker “The Exact Evaluation of Some New Lattice Sums” In Symmetry 9.12 Multidisciplinary Digital Publishing Institute, 2017, pp. 314 URL: https://doi.org/10.3390/sym9120314
Citations (2)

Summary

We haven't generated a summary for this paper yet.