Singular Euler-Maclaurin expansion (2003.12422v3)
Abstract: We present the singular Euler--Maclaurin expansion, a new method for the efficient computation of large singular sums that appear in long-range interacting systems in condensed matter and quantum physics. In contrast to the traditional Euler--Maclaurin summation formula, the new method is applicable also to the product of a differentiable function and a singularity. For suitable non-singular functions, we show that the approximation error decays exponentially in the expansion order and polynomially in the characteristic length scale of the non-singular function, where precise error estimates are provided. The sum is approximated by an integral plus a differential operator acting on the non-singular function factor only. The singularity furthermore is included in a generalisation of the Bernoulli polynomials that form the coefficients of the differential operator. We demonstrate the numerical performance of the singular Euler--Maclaurin expansion by applying it to the computation of the full non-linear long-range forces inside a macroscopic one-dimensional crystal with $2\times 10{10}$ particles. A reference implementation in Mathematica is provided online.