Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Performance of a modular ton-scale pixel-readout liquid argon time projection chamber (2403.03212v1)

Published 5 Mar 2024 in physics.ins-det and hep-ex

Abstract: The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Amerio, S.; et al. Design, construction and tests of the ICARUS T600 detector. Nucl. Instrum. Meth. A 2004, 527, 329–410. https://doi.org/10.1016/j.nima.2004.02.044.
  2. Anderson, C.; et al. The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab. JINST 2012, 7, P10019, [arXiv:physics.ins-det/1205.6747]. https://doi.org/10.1088/1748-0221/7/10/P10019.
  3. Acciarri, R.; et al. Design and Construction of the MicroBooNE Detector. JINST 2017, 12, P02017, [arXiv:physics.ins-det/1612.05824]. https://doi.org/10.1088/1748-0221/12/02/P02017.
  4. Abi, B.; et al. First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. JINST 2020, 15, P12004, [arXiv:physics.ins-det/2007.06722]. https://doi.org/10.1088/1748-0221/15/12/P12004.
  5. Abud, A.A.; et al. Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. JINST 2022, 17, P01005, [arXiv:physics.ins-det/2108.01902]. https://doi.org/10.1088/1748-0221/17/01/P01005.
  6. Abi, B.; et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE. JINST 2020, 15, T08008, [arXiv:physics.ins-det/2002.02967]. https://doi.org/10.1088/1748-0221/15/08/T08008.
  7. DUNE Collaboration. Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report. Instruments 2021, 5. https://doi.org/10.3390/instruments5040031.
  8. Asaadi, J.; et al. A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. Instruments 2020, 4. https://doi.org/10.3390/instruments4010006.
  9. Dwyer, D.; et al. LArPix: demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers. Journal of Instrumentation 2018, 13, P10007–P10007. https://doi.org/10.1088/1748-0221/13/10/p10007.
  10. Russell, B.; et al. LArPix-v2: a commercially scalable large-format 3D charge-readout scheme for LArTPCs. In preparation 2022.
  11. Auger, M.; et al. ArCLight—A Compact Dielectric Large-Area Photon Detector. Instruments 2018, 2. https://doi.org/10.3390/instruments2010003.
  12. Anfimov, N.; et al. Development of the Light Collection Module for the Liquid Argon Time Projection Chamber (LArTPC). Journal of Instrumentation 2020, 15, C07022–C07022. https://doi.org/10.1088/1748-0221/15/07/c07022.
  13. Berner, R.; et al. First Operation of a Resistive Shell Liquid Argon Time Projection Chamber: A New Approach to Electric-Field Shaping. Instruments 2019, 3. https://doi.org/10.3390/instruments3020028.
  14. Adamson, P.; et al. The NuMI Neutrino Beam. Nucl. Instrum. Meth. A 2016, 806, 279–306, [arXiv:physics.acc-ph/1507.06690]. https://doi.org/10.1016/j.nima.2015.08.063.
  15. Asaadi, J.; et al. First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers. Instruments 2020, 4, 9, [arXiv:physics.ins-det/1801.08884]. https://doi.org/10.3390/instruments4010009.
  16. Asaadi, J.; et al. A pixelated charge readout for Liquid Argon Time Projection Chambers. JINST 2018, 13, C02008. https://doi.org/10.1088/1748-0221/13/02/C02008.
  17. ARAPUCA a new device for liquid argon scintillation light detection. Journal of Instrumentation 2016, 11, C02004–C02004. https://doi.org/10.1088/1748-0221/11/02/c02004.
  18. Serrano, J.; et al. The White Rabbit Project. In Proceedings of the Proc. 12th Int. Conf. on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’09). JACoW Publishing, Oct. 2009, pp. 93–95.
  19. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. AAAI Press, 1996, KDD’96.
  20. Moyal, J. XXX. Theory of ionization fluctuations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1955, 46, 263–280, [https://doi.org/10.1080/14786440308521076]. https://doi.org/10.1080/14786440308521076.
  21. Baller, B. Liquid Argon Properties (Tables and Calculators) Version 4. https://lar.bnl.gov/properties/.
  22. Hamamatsu. MPPC S13360 series datasheet. https://www.hamamatsu.com/resources/pdf/ssd/s13360_series_kapd1052e.pdf.
  23. CORSIKA: A Monte Carlo code to simulate extensive air showers 1998.
  24. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2003, 506, 250–303. https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8.
  25. DUNE/larnd-sim, 2021. https://doi.org/10.5281/zenodo.4582721.
  26. Abed Abud, A.; et al. Highly-parallelized simulation of a pixelated LArTPC on a GPU. JINST 2023, 18, P04034, [arXiv:physics.comp-ph/2212.09807]. https://doi.org/10.1088/1748-0221/18/04/P04034.
  27. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. https://doi.org/10.1145/358669.358692.
  28. Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons. Journal of Instrumentation 2020, 15, P03022–P03022. https://doi.org/10.1088/1748-0221/15/03/p03022.
  29. A study of the factors affecting the electron lifetime in ultra-pure liquid argon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1991, 305, 177–186. https://doi.org/https://doi.org/10.1016/0168-9002(91)90532-U.
  30. Abi, B.; et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology. JINST 2020, 15, T08010, [arXiv:physics.ins-det/2002.03010]. https://doi.org/10.1088/1748-0221/15/08/T08010.
  31. Abratenko, P.; et al. Measurement of space charge effects in the MicroBooNE LArTPC using cosmic muons. Journal of Instrumentation 2020, 15, P12037–P12037. https://doi.org/10.1088/1748-0221/15/12/p12037.
  32. Abi, B.; et al. First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. Journal of Instrumentation 2020, 15, P12004–P12004. https://doi.org/10.1088/1748-0221/15/12/p12004.
  33. Drift velocities of electrons, saturation characteristics of ionization and W-values for conversion electrons in liquid argon, liquid argon-gas mixtures and liquid xenon. Nucl. Instrum. Meth. 1975, 131, 249–258. https://doi.org/10.1016/0029-554X(75)90327-4.
  34. Recombination of electron-ion pairs in liquid argon and liquid xenon. Phys. Rev. A 1987, 36, 614–616. https://doi.org/10.1103/PhysRevA.36.614.
  35. Birks, J.B. Scintillations from Organic Crystals: Specific Fluorescence and Relative Response to Different Radiations. Proc. Phys. Soc. A 1951, 64, 874–877. https://doi.org/10.1088/0370-1298/64/10/303.
  36. Amoruso, S.; et al. Study of electron recombination in liquid argon with the ICARUS TPC. Nucl. Instrum. Meth. A 2004, 523, 275–286. https://doi.org/10.1016/j.nima.2003.11.423.
  37. Acciarri, R.; et al. A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC. Journal of Instrumentation 2013, 8, P08005–P08005. https://doi.org/10.1088/1748-0221/8/08/p08005.
  38. Absolute Scintillation Yields in Liquid Argon and Xenon for Various Particles. Japanese Journal of Applied Physics 2002, 41, 1538. https://doi.org/10.1143/JJAP.41.1538.
  39. Abed Abud, A.; et al. Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector. Phys. Rev. D 2023, 107, 092012, [arXiv:hep-ex/2211.01166]. https://doi.org/10.1103/PhysRevD.107.092012.
  40. Foreman, W.; et al. Calorimetry for low-energy electrons using charge and light in liquid argon. Phys. Rev. D 2020, 101, 012010, [arXiv:physics.ins-det/1909.07920]. https://doi.org/10.1103/PhysRevD.101.012010.
  41. Acciarri, R.; et al. Michel Electron Reconstruction Using Cosmic-Ray Data from the MicroBooNE LArTPC. JINST 2017, 12, P09014, [arXiv:physics.ins-det/1704.02927]. https://doi.org/10.1088/1748-0221/12/09/P09014.
  42. Muon stopping power and range tables 10-MeV to 100-TeV. Atom. Data Nucl. Data Tabl. 2001, 78, 183–356. https://doi.org/10.1006/adnd.2001.0861.
Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com