Deriving the non-perturbative gravitational dual of quantum Liouville theory from BCFT operator algebra (2403.03179v3)
Abstract: We demonstrate that, by utilizing the boundary conformal field theory (BCFT) operator algebra of the Liouville CFT, one can express its path-integral on any Riemann surface as a three dimensional path-integral with appropriate boundary conditions, generalising the recipe for rational CFTs \cite{Hung:2019bnq, Brehm:2021wev, Chen:2022wvy, Cheng:2023kxh}. This serves as a constructive method for deriving the \textit{quantum} holographic dual of the CFT, which reduces to Einstein gravity in the large central charge limit. As a byproduct, the framework provides an explicit discrete state-sum of a 3D non-chiral topological theory constructed from quantum $6j$ symbols of $\mathcal{U}_q(sl(2,\mathbb{R}))$ with non-trivial boundary conditions, representing a long-sought non-perturbative discrete formulation of 3D pure gravity with negative cosmological constant, at least within a class of three manifolds. This constitutes the first example of an exact holographic tensor network that reproduces a known irrational CFT with a precise quantum gravitational interpretation.
- L. Y. Hung and G. Wong, Phys. Rev. D 104, 026012 (2021), arXiv:1912.11201 [hep-th] .
- E. M. Brehm and I. Runkel, J. Phys. A 55, 235001 (2022), arXiv:2112.01563 [cond-mat.stat-mech] .
- H. Dorn and H. J. Otto, Nucl. Phys. B 429, 375 (1994), arXiv:hep-th/9403141 .
- A. B. Zamolodchikov and A. B. Zamolodchikov, Nucl. Phys. B 477, 577 (1996), arXiv:hep-th/9506136 .
- B. Ponsot and J. Teschner, (1999), arXiv:hep-th/9911110 .
- J. Teschner, PoS tmr2000, 041 (2000), arXiv:hep-th/0009138 .
- B. Ponsot and J. Teschner, Nucl. Phys. B 622, 309 (2002), arXiv:hep-th/0110244 .
- D. Aasen, P. Fendley, and R. S. K. Mong, “Topological Defects on the Lattice: Dualities and Degeneracies,” (2020), arXiv:2008.08598 [cond-mat.stat-mech] .
- H. Ma and S.-S. Lee, SciPost Phys. 12, 046 (2022), arXiv:2009.11880 [hep-th] .
- M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005), arXiv:cond-mat/0404617 .
- V. G. Turaev and O. Y. Viro, Topology 31, 865 (1992).
- G. W. Moore and N. Seiberg, Commun. Math. Phys. 123, 177 (1989).
- D. Gaiotto and J. Kulp, JHEP 02, 132 (2021), arXiv:2008.05960 [hep-th] .
- W. Ji and X.-G. Wen, Phys. Rev. Res. 2, 033417 (2020), arXiv:1912.13492 [cond-mat.str-el] .
- L. D. Faddeev, in Conference Moshe Flato (2000) pp. 149–156, arXiv:math/9912078 .
- G. Ponzano and T. E. Regge, (1968).
- H. Ooguri and N. Sasakura, Mod. Phys. Lett. A 6, 3591 (1991), arXiv:hep-th/9108006 .
- L. Freidel and D. Louapre, Class. Quant. Grav. 21, 5685 (2004), arXiv:hep-th/0401076 .
- J. W. Barrett and I. Naish-Guzman, Class. Quant. Grav. 26, 155014 (2009), arXiv:0803.3319 [gr-qc] .
- J. Ellegaard Andersen and R. Kashaev, Commun. Math. Phys. 330, 887 (2014), arXiv:1109.6295 [math.QA] .
- J. Ellegaard Andersen and R. Kashaev, (2013), arXiv:1305.4291 [math.GT] .
- G. Wong, (2022), arXiv:2212.03193 [hep-th] .
- Y. Nakayama, Int. J. Mod. Phys. A 19, 2771 (2004), arXiv:hep-th/0402009 .
- J. Teschner and G. Vartanov, Lett. Math. Phys. 104, 527 (2014), arXiv:1202.4698 [hep-th] .
- J. Murakami and A. Ushijima, (2004), arXiv:math/0402087 [math.MG] .
- J. D. Brown and M. Henneaux, Commun. Math. Phys. 104, 207 (1986).
- G. Hayward, Phys. Rev. D 47, 3275 (1993).
- T. Takayanagi and K. Tamaoka, JHEP 02, 167 (2020), arXiv:1912.01636 [hep-th] .
- L. McGough and H. Verlinde, JHEP 11, 208 (2013), arXiv:1308.2342 [hep-th] .
- B. Swingle, Phys. Rev. D 86, 065007 (2012), arXiv:0905.1317 [cond-mat.str-el] .
- C. Akers and A. Y. Wei, (2024), arXiv:2402.05910 [hep-th] .
- M. Van Raamsdonk, (2018), arXiv:1809.01197 [hep-th] .
- J. Lin, (2021), arXiv:2107.12634 [hep-th] .
- S. He, Phys. Rev. D 99, 026005 (2019), arXiv:1711.00624 [hep-th] .
- T. Hartman, (2013), arXiv:1303.6955 [hep-th] .
- T. Faulkner, (2013), arXiv:1303.7221 [hep-th] .
- F. A. Smirnov and A. B. Zamolodchikov, Nucl. Phys. B 915, 363 (2017), arXiv:1608.05499 [hep-th] .
- K. Krasnov, Adv. Theor. Math. Phys. 4, 929 (2000), arXiv:hep-th/0005106 .
- L. Freidel and K. Krasnov, J. Math. Phys. 45, 2378 (2004), arXiv:hep-th/0205091 .
- T. Takayanagi, Phys. Rev. Lett. 107, 101602 (2011), arXiv:1105.5165 [hep-th] .
- T. Numasawa and I. Tsiares, JHEP 08, 156 (2022), arXiv:2202.01633 [hep-th] .
- J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Phys. Rev. E 50 (1994), 10.1103/PhysRevE.50.888, arXiv:cond-mat/9403051 .
- A. Belin and J. de Boer, Class. Quant. Grav. 38, 164001 (2021), arXiv:2006.05499 [hep-th] .
- E. J. Martinec, (1998), arXiv:hep-th/9809021 .
- S. Carlip, Class. Quant. Grav. 15, 3609 (1998), arXiv:hep-th/9806026 .
- W. Z. Chua and Y. Jiang, (2023), arXiv:2309.05126 [hep-th] .
- A. B. Zamolodchikov and A. B. Zamolodchikov, , 280 (2001), arXiv:hep-th/0101152 .
- T. Hartman and J. Maldacena, JHEP 05, 014 (2013), arXiv:1303.1080 [hep-th] .
- H.Verlinde, “Ope and the black hole information paradox,” talk at the conference Gravitational Emergence in AdS/CFT, BIRS, October 2021. Video available at https://www.birs.ca.
- H. Verlinde, (2022), arXiv:2210.08306 [hep-th] .
- J. Chandra and T. Hartman, JHEP 05, 109 (2023), arXiv:2302.02446 [hep-th] .
- K. Goto and T. Takayanagi, JHEP 10, 153 (2017), arXiv:1704.00053 [hep-th] .
- Y. U. Taylor and C. T. Woodward, (2005), arXiv:math/0305113 [math.QA] .
- L. D. Faddeev and R. M. Kashaev, J. Phys. A 35, 4043 (2002), arXiv:hep-th/0201049 .
- G. Turiaci and H. Verlinde, JHEP 12, 110 (2016), arXiv:1603.03020 [hep-th] .
- N. Seiberg, Prog. Theor. Phys. Suppl. 102, 319 (1990).
- L. Eberhardt, (2023), arXiv:2309.11540 [hep-th] .
- I. Runkel, Nucl. Phys. B 549, 563 (1999), arXiv:hep-th/9811178 .
- V. B. Petkova, JHEP 04, 061 (2010), arXiv:0912.5535 [hep-th] .
- E. Apresyan and G. Sarkissian, JHEP 05, 131 (2018), arXiv:1802.01995 [hep-th] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.