Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Probing Light Inelastic Dark Matter from Direct Detection (2403.03128v3)

Published 5 Mar 2024 in hep-ph, astro-ph.CO, and hep-ex

Abstract: For dark matter (DM) direct detections, the kinematic effects such as those of the inelastic scattering can play important role in light DM searches. The light DM detection is generally difficult because of its small recoil energy. But the recoil energy of the exothermic inelastic DM scattering could exceed the detection threshold due to the contribution from the DM mass-splitting, making the direct detection of sub-GeV DM feasible. In this work, we systematically study signatures of the light exothermic inelastic DM from the recoil spectra including both the DM-electron scattering and Migdal effect. Such inelastic DM has mass around (sub-)GeV scale with DM mass-splitting of $O(1-102)$keV. We analyze the direct detection sensitivities to such light inelastic DM. For different inelastic DM masses and mass-splittings, we find that the DM-electron recoil and Migdal effect can contribute significantly and differently to the direct detection signatures. The DM-lepton and/or DM-quark interactions may vary for different DM models, and their interplay leads to a diversity in the recoil spectra. Hence, it is important to perform a combined analysis to include both the DM-electron recoil and Migdal effect. We further demonstrate that this analysis has strong impacts on the cosmological and laboratory bounds for the inelastic DM.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. R. Essig, J. Mardon and T. Volansky, “Direct Detection of Sub-GeV Dark Matter,” Phys. Rev. D 85 (2012), 076007 [arXiv:1108.5383 [hep-ph]].
  2. A. B. Migdal, J. Phys. (USSR) 4 (1941) 449;
  3. M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, “Migdal Effect in Dark Matter Direct Detection Experiments,” JHEP 03 (2018) 194 [arXiv:1707.07258 [hep-ph]].
  4. M. J. Dolan, F. Kahlhoefer, C. McCabe, “Directly detecting sub-GeV dark matter with electrons from nuclear scattering,” Phys. Rev. Lett. 121 (2018) 101801, [arXiv: 1711.09906 [hep-ph]].
  5. N. F. Bell, J. B. Dent, J. L. Newstead, S. Sabharwal and T. J. Weiler, “Migdal effect and photon bremsstrahlung in effective field theories of dark atter direct detection and coherent elastic neutrino-nucleus scattering,” Phys. Rev. D 101 (2020) no.1, 015012 [arXiv:1905.00046 [hep-ph]].
  6. R. Essig, J. Pradler, M. Sholapurkar and T. T. Yu, “Relation between the Migdal Effect and Dark Matter-Electron Scattering in Isolated Atoms and Semiconductors,” Phys. Rev. Lett. 124 (2020) no.2, 021801 [arXiv:1908.10881 [hep-ph]].
  7. K. D. Nakamura, K. Miuchi, S. Kazama, Y. Shoji, M. Ibe and W. Nakano, “Detection capability of the Migdal effect for argon and xenon nuclei with position-sensitive gaseous detectors,” PTEP 2021 (2021) no.1, 013C01 [arXiv:2009.05939 [physics.ins-det]].
  8. S. Knapen, J. Kozaczuk and T. Lin, “Migdal Effect in Semiconductors,” Phys. Rev. Lett. 127 (2021) no.8, 081805 [arXiv:2011.09496 [hep-ph]].
  9. W. Wang, K. Y. Wu, L. Wu, and B. Zhu, “Direct detection of spin-dependent sub-GeV dark matter via Migdal effect,” Nucl. Phys. B 983 (2022) 115907 [arXiv:2112.06492 [hep-ph]].
  10. P. W. Graham, R. Harnik, S. Rajendran and P. Saraswat, “Exothermic Dark Matter,” Phys. Rev. D 82 (2010) 063512 [arXiv:1004.0937 [hep-ph]]; G. Barello, S. Chang and C. A. Newby, “A Model Independent Approach to Inelastic Dark Matter Scattering,” Phys. Rev. D 90 (2014) 094027 [arXiv:1409.0536 [hep-ph]]; E. Del Nobile, G. B. Gelmini, A. Georgescu and J. H. Huh, “Reevaluation of spin-dependent WIMP-proton interactions as an explanation of the DAMA data,” JCAP 1508 (2015) 046 [arXiv:1502.07682 [hep-ph]]; M. Baryakhtar, A. Berlin, H. Liu and N. Weiner, “Electromagnetic signals of inelastic dark matter scattering,” JHEP 06 (2022) 047 [arXiv:2006.13918 [hep-ph]]; M. Carrillo González and N. Toro, “Cosmology and signals of light pseudo-Dirac dark matter,” JHEP 04 (2022) 060 [arXiv:2108.13422 [hep-ph]].
  11. H. J. He, Y. C. Wang and J. Zheng, “EFT Approach of Inelastic Dark Matter for Xenon Electron Recoil Detection”, JCAP 01 (2021) 042 [arXiv:2007.04963 [hep-ph]].
  12. H. J. He, Y. C. Wang and J. Zheng, “GeV-scale inelastic dark matter with dark photon mediator via direct detection and cosmological and laboratory constraints”, Phys. Rev. D 104 (2021) no.11, 115033 [arXiv:2012.05891 [hep-ph]].
  13. I. M. Bloch, A. Caputo, R. Essig, D. Redigolo, M. Sholapurkar and T. Volansky, “Exploring new physics with O(keV) electron recoils in direct detection experiments,” JHEP 01 (2021) 178 [arXiv:2006.14521 [hep-ph]].
  14. J. Bramante and N. Song, “Electric But Not Eclectic: Thermal Relic Dark Matter for the XENON1T Excess,” Phys. Rev. Lett. 125 (2020) no.16, 161805 [arXiv:2006.14089 [hep-ph]].
  15. J. Engel and P. Vogel, “Spin dependent cross-sections of weakly interacting massive particles on nuclei,” Phys. Rev. D 40 (1989) 3132-3135; J. Engel, “Nuclear form-factors for the scattering of weakly interacting massive particles,” Phys. Lett. B 264 (1991) 114-119; F. Iachello, L. M. Krauss and G. Maino, “Spin Dependent Scattering of Weakly Interacting Massive Particles in Heavy Nuclei,” Phys. Lett. B 254 (1991) 220-224.
  16. G. Jungman, M. Kamionkowski and K. Griest, “Supersymmetric dark matter,” Phys. Rept. 267 (1996) 195-373 [arXiv:hep-ph/9506380].
  17. K. Griest, “Cross-Sections, Relic Abundance and Detection Rates for Neutralino Dark Matter,” Phys. Rev. D 38 (1988) 2357 [erratum: D 39 (1989) 3802].
  18. J. D. Lewin and P. F. Smith, “Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil,” Astropart. Phys. 6 (1996) 87-112.
  19. B. M. Roberts, V. A. Dzuba, V. V. Flambaum, M. Pospelov and Y. V. Stadnik, “Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal”, Phys. Rev. D 93 (2016) 115037, no.11 [arXiv:1604.04559 [hep-ph]].
  20. B. M. Roberts and V. V. Flambaum, “Electron-interacting dark matter: Implications from DAMA/LIBRA-phase2 and prospects for liquid xenon detectors and NaI detectors”, Phys. Rev. D 100 (2019) 063017, no.6 [arXiv:1904.07127 [hep-ph]].
  21. C. McCabe, “The Astrophysical Uncertainties Of Dark Matter Direct Detection Experiments,” Phys. Rev. D 82 (2010) 023530 [arXiv:1005.0579 [hep-ph]].
  22. C. Savage, K. Freese and P. Gondolo, “Annual Modulation of Dark Matter in the Presence of Streams,” Phys. Rev. D 74 (2006) 043531 [arXiv:astro-ph/0607121].
  23. N. F. Bell, J. B. Dent, B. Dutta, S. Ghosh, J. Kumar and J. L. Newstead, “Low-mass inelastic dark matter direct detection via the Migdal effect,” Phys. Rev. D 104 (2021) no.7, 7 [arXiv:2103.05890 [hep-ph]].
  24. J. Li, L. Su, L. Wu, and B. Zhu, “Spin-dependent sub-GeV inelastic dark matter-electron scattering and Migdal effect. Part I. Velocity independent operator,” JCAP 04 (2023) 020 [arXiv: 2210.15474 [hep-ph]].
  25. M. Srednicki, R. Watkins and K. A. Olive, “Calculations of Relic Densities in the Early Universe,” Nucl. Phys. B 310 (1988) 693.
  26. P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles: Improved analysis,” Nucl. Phys. B 360 (1991) 145.
  27. G. Belanger, A. Mjallal and A. Pukhov, “Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios,” Eur. Phys. J. C 81 (2021) no.3, 239 [arXiv:2003.08621 [hep-ph]].
  28. T. R. Slatyer, N. Padmanabhan and D. P. Finkbeiner, “CMB Constraints on WIMP Annihilation: Energy Absorption During the Recombination Epoch,” Phys. Rev. D 80 (2009) no.4, 043526 [arXiv:0906.1197 [astro-ph.CO]].
  29. T. R. Slatyer, “Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results,” Phys. Rev. D 93 (2016) no.2, 023527 [arXiv:1506.03811 [hep-ph]].
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.