Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Opportunistic User Scheduling for Secure RIS-aided Wireless Communications (2403.02963v2)

Published 5 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, we provide expressions for the secrecy outage probability (SOP) for suboptimal and optimal opportunistic scheduling schemes in a reconfigurable intelligent surface (RIS) aided {single antenna} system with multiple eavesdroppers in approximate closed form. A suboptimal scheduling (SS) scheme is analyzed, which is used when the channel state information (CSI) of the eavesdropping links is unavailable, and the optimal scheduling (OS) scheme is also analyzed, which is used when the global CSI is available. For each scheme, we provide a simplified expression for the SOP in the high signal-to-noise ratio (SNR) regime to demonstrate its behavior as a function of the key system parameters. At high SNR, the SOP saturates to a constant level which decreases exponentially with the number of RIS elements in the SS scheme and with the product of the number of RIS elements and the number of users in the OS scheme. We also show that the derived SOP of the SS scheme can directly provide the SOP for the best antenna-user pair scheduling scheme in a multiple antenna system. We compare the performance of the opportunistic user scheduling schemes with that of a non-orthogonal multiple access (NOMA) based scheduling scheme which chooses a pair of users in each time slot for scheduling and we show that the opportunistic schemes outperform the NOMA-based scheme. We also derive a closed-form expression for the SOP of a decode-and-forward (DF) relay-aided scheduling scheme in order to compare it with that of the RIS-aided system. It is found that the RIS-aided system outperforms the relay-aided systems when the number of RIS elements is sufficiently large. An increased number of RIS elements is required to outperform the relay-aided system at higher operating frequencies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, Aug. 2019.
  2. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, Nov. 2020.
  3. A. D. Wyner, “The wire-tap channel,” Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, Oct. 1975.
  4. H. V. Poor and R. S. Schaefer, “Wireless physical layer security,” Proc. National Academy of Sciences, vol. 114, no. 1, pp. 19–26, Dec. 2017.
  5. M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Trans. Inf. Theory., vol. 54, no. 6, pp. 2515–2534, May 2008.
  6. L. Yang, J. Yang, W. Xie, M.O. Hasna, T. Tsiftsis, and M. Di Renzo, “Secrecy performance analysis of RIS-aided wireless communication systems,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12 296–12 300, Jul. 2020.
  7. Y. Ai, F. A. P. de Figueiredo, L. Kong, M. Cheffena, S. Chatzinotas, and B. Ottersten, “Secure vehicular communications through reconfigurable intelligent surfaces,” IEEE Trans. Veh. Technol., vol. 70, no. 7, pp. 7272–7276, Jul. 2021.
  8. M. Kaveh, Z. Yan, and R. Jäntti, “Secrecy performance analysis of RIS-aided smart grid communications,” IEEE Trans. Ind. Informat., pp. 1–13, Oct. 2023.
  9. B.Wafai, C. Kundu, A.Dubey, and M. F. Flanagan, “Optimal Friendly Jamming and Transmit Power Allocation in RIS-assisted Secure Communication,” in Proc. IEEE Global Communications Conference, Rio de Janeiro, Brazil, Dec. 2022, pp. 1–6.
  10. W. Shi, J. Xu, W. Xu, M. D. Renzo, and C. Zhao, “Secure outage analysis of RIS-assisted communications with discrete phase control,” IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 5435–5440, Apr. 2023.
  11. I. Trigui, W. Ajib, and W. Zhu, “Secrecy outage probability and average rate of RIS-aided communications using quantized phases,” IEEE Commun. Lett., vol. 25, no. 6, pp. 1820–1824, Jun. 2021.
  12. W. Wang, H. Tian, and W. Ni, “Secrecy performance analysis of IRS-aided UAV relay system,” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2693–2697, Dec. 2021.
  13. W. Shi, J. Xu, W. Xu, C. Yuen, A. L. Swindlehurst, and C. Zhao, “On secrecy performance of RIS-assisted MISO systems over rician channels with spatially random eavesdroppers,” IEEE Trans. Wireless Commun., pp. 1–15, early access, Jan. 2024.
  14. J. Zhang, H. Du, Q. Sun, B. Ai, and D. W. K. Ng, “Physical layer security enhancement with reconfigurable intelligent surface-aided networks,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 3480–3495, May 2021.
  15. A. Bletsas, A. Khisti, D. Reed, and A. Lippman, “A simple cooperative diversity method based on network path selection,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 659–672, Mar. 2006.
  16. C. Kundu, S. Ghose, and R. Bose, “Secrecy outage of dual-hop regenerative multi-relay system with relay selection,” IEEE Trans. Wireless Commun., vol. 14, no. 8, pp. 4614–4625, Aug. 2015.
  17. M. H. Khoshafa, T. M. N. Ngatched, and M. H. Ahmed, “On the physical layer security of underlay relay-aided device-to-device communications,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7609–7621, Jul. 2020.
  18. C. Kundu and M. F. Flanagan, “Ergodic secrecy rate of optimal source selection in a multi-source system with unreliable backhaul,” IEEE Wireless Commun. Lett., vol. 10, no. 5, pp. 1118–1122, Feb. 2021.
  19. S. B. Kotwal, C. Kundu, S. Modem, A. Dubey, and M. F. Flanagan, “Ergodic secrecy rate of optimal source-destination pair selection in frequency-selective fading,” IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 4598–4614, Apr. 2023.
  20. X. Gan, C. Zhong, Y. Zhu, and Z. Zhong, “User selection in reconfigurable intelligent surface assisted communication systems,” IEEE Commun. Lett., vol. 25, no. 4, pp. 1–4, Apr. 2021.
  21. Z. Zhang, J. Chen, Q. Wu, Y. Liu, L. Lv, and X. Su, “Enhancing security of NOMA networks via distributed intelligent reflecting surfaces,” in Proc. IEEE Global Communications Conference, Madrid, Spain, Dec. 2021, pp. 1–6.
  22. L. Yang, W. Zhang, P. S. Bithas, H. Liu, M. O. Hasna, T. A. Tsiftsis, and D. W. K. Ng, “Covert transmission and secrecy analysis of RS-RIS-NOMA-aided 6G wireless communication systems,” IEEE Trans. Veh. Technol., vol. 72, no. 8, pp. 10 659–10 670, Aug. 2023.
  23. Y. Pei, X. Yue, W. Yi, Y. Liu, X. Li, and Z. Ding, “Secrecy outage probability analysis for downlink RIS-NOMA networks with on-off control,” IEEE Trans. Veh. Technol., vol. 72, no. 9, pp. 11 772–11 786, Sep. 2023.
  24. E. Björnson, and Ö. Özdogan, and E. G. Larsson, , “Intelligent Reflecting Surface Versus Decode-and Forward: How Large Surfaces are Needed to Beat Relaying?” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 244–248, Oct. 2020.
  25. K. Ntontin, M. Di Renzo, and F. Lazarakis, “On the rate and energy efficiency comparison of reconfigurable intelligent surfaces with relays,” in Proc. IEEE International Workshop on Signal Processing Advances in Wireless Communications, Atlanta, GA, USA, May 2020, pp. 1–5.
  26. M. Di Renzo, K. Ntontin, J. Song, F. H. Danufane, X. Qian, F. Lazarakis, J. De Rosny, D.-T. Phan-Huy, O. Simeone, R. Zhang, M. Debbah, G. Lerosey, M. Fink, S. Tretyakov, and S. Shamai, “Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison,” IEEE Open J. Commun. Soc., vol. 1, pp. 798–807, Jun. 2020.
  27. J. Ye, A. Kammoun, and M.-S. Alouini, “Spatially-distributed RISs vs relay-assisted systems: A fair comparison,” IEEE Open J. Commun. Soc., vol. 2, pp. 799–817, Feb. 2021.
  28. M. B. Madrid, J. Famaey, and F. Lemic, “Intelligent reflective surface vs. mobile relay-supported NLoS avoidance in indoor mmWave networks,” in Proc. IEEE Global Communications Conference, Rio de Janeiro, Brazil, Dec. 2022, pp. 934–939.
  29. B. Wafai, S. Ghose, C. Kundu, A. Dubey, and M. F. Flanagan, “Secure opportunistic user scheduling in RIS-aided networks: A comparison with NOMA-based scheduling,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), Dubai, UAE, Apr. 2024, pp. 1–6. [Online]. Available: https://doi.org/10.48550/arXiv.2306.03016
  30. N. S. Perović, L.-N. Tran, M. Di Renzo, and M. F. Flanagan, “Achievable rate optimization for MIMO systems with reconfigurable intelligent surfaces,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3865–3882, Jun. 2021.
  31. F. H. Danufane, M. D. Renzo, J. de Rosny, and S. Tretyakov, “On the path-loss of reconfigurable intelligent surfaces: An approach based on green’s theorem applied to vector fields,” IEEE Trans. Commun., vol. 69, no. 8, pp. 5573–5592, May 2021.
  32. S. W. Ellingson, “Path loss in reconfigurable intelligent surface-enabled channels,” in Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki, Finland, Sep. 2021, pp. 829–835.
  33. D. Kudathanthirige, D. Gunasinghe, and G. Amarasuriya, “Performance analysis of intelligent reflective surfaces for wireless communication,” in Proc. IEEE International Conference on Communications, Dublin, Ireland, Jun. 2020, pp. 1–6.
  34. J. Barros and M. R. D. Rodrigues, “Secrecy capacity of wireless channels,” in Proc. IEEE International Symposium on Information Theory , Seattle, WA, USA, Jul. 2006, pp. 356–360.
  35. X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust and secure wireless communications via intelligent reflecting surfaces,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2637–2652, Nov. 2020.
  36. D. Sadhwani, R. N. Yadav, and S. Aggarwal, “Tighter bounds on the Gaussian Q𝑄Qitalic_Q function and its application in Nakagami- m𝑚{m}italic_m fading channel,” IEEE Wireless Commun. Lett., vol. 6, no. 5, pp. 574–577, Oct. 2017.
  37. A. Mukherjee, S. Fakoorian, J. Huang, and A. L. Swindlehurst, “Principles of physical layer security in multiuser wireless networks: A survey,” IEEE Commun. Surveys Tuts., vol. 16, no. 3, pp. 1550–1573, Feb. 2014.
  38. Z. Ding, P. Fan, and H. V. Poor, “User pairing in non-orthogonal multiple access downlink transmissions,” in Proc. IEEE Global Communications Conference, San Diego, CA, USA, Dec. 2015, pp. 1–5.
  39. Z. Ding, M. Peng, and H. V. Poor, “Cooperative non-orthogonal multiple access in 5G systems,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1462–1465, Aug. 2015.
  40. X. Yue, Y. Liu, Y. Yao, X. Li, R. Liu, and A. Nallanathan, “Secure communications in a unified non-orthogonal multiple access framework,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2163–2178, Mar. 2020.
  41. Y. Qi and M. Vaezi, “IRS-assisted physical layer security in MIMO-NOMA networks,” IEEE Commun. Lett., vol. 27, no. 3, pp. 792–796, Mar. 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com