Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatially Non-Stationary XL-MIMO Channel Estimation: A Three-Layer Generalized Approximate Message Passing Method (2403.02633v5)

Published 5 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, channel estimation problem for extremely large-scale multi-input multi-output (XL-MIMO) systems is investigated with the considerations of the spherical wavefront effect and the spatially non-stationary (SnS) property. Due to the diversities of SnS characteristics among different propagation paths, the concurrent channel estimation of multiple paths becomes intractable. To address this challenge, we propose a two-phase channel estimation scheme. In the first phase, the angles of departure (AoDs) on the user side are estimated, and a carefully designed pilot transmission scheme enables the decomposition of the received signal from different paths. In the second phase, the subchannel estimation corresponding to different paths is formulated as a three-layer Bayesian inference problem. Specifically, the first layer captures block sparsity in the angular domain, the second layer promotes SnS property in the antenna domain, and the third layer decouples the subchannels from the observed signals. To efficiently facilitate Bayesian inference, we propose a novel three-layer generalized approximate message passing (TL-GAMP) algorithm based on structured variational massage passing and belief propagation rules. Simulation results validate the convergence and effectiveness of the proposed algorithm, showcasing its robustness to different channel scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Sci. China Inf. Sci, vol. 64, pp. 1–74, 2021.
  2. H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and F. Tufvesson, “6G wireless systems: Vision, requirements, challenges, insights, and opportunities,” Proc. IEEE, vol. 109, no. 7, pp. 1166–1199, 2021.
  3. Z. Wang, J. Zhang, H. Du, W. E. I. Sha, B. Ai, D. Niyato, and M. Debbah, “Extremely large-scale MIMO: Fundamentals, challenges, solutions, and future directions,” IEEE Wirel. Commun., pp. 1–9, 2023.
  4. M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions,” IEEE Commun. Mag., vol. 61, no. 1, pp. 40–46, 2023.
  5. D. Dardari and N. Decarli, “Holographic communication using intelligent surfaces,” IEEE Commun. Mag., vol. 59, no. 6, pp. 35–41, 2021.
  6. Z. Zhang and L. Dai, “Pattern-division multiplexing for multi-user continuous-aperture MIMO,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2350–2366, 2023.
  7. A. Tang, J.-B. Wang, Y. Pan, W. Zhang, Y. Chen, H. Yu, and R. C. de Lamare, “Line-of-sight extra-large MIMO systems with angular-domain processing: Channel representation and transceiver architecture,” IEEE Trans. Commun., vol. 72, no. 1, pp. 570–584, 2024.
  8. Y. Pan, C. Pan, S. Jin, and J. Wang, “RIS-aided near-field localization and channel estimation for the terahertz system,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 4, pp. 878–892, 2023.
  9. K. T. Selvan and R. Janaswamy, “Fraunhofer and fresnel distances: Unified derivation for aperture antennas,” IEEE Antennas Propag. Mag., vol. 59, no. 4, pp. 12–15, 2017.
  10. H. Lu and Y. Zeng, “Communicating with extremely large-scale array/surface: Unified modeling and performance analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4039–4053, 2022.
  11. E. Björnson and L. Sanguinetti, “Power scaling laws and near-field behaviors of massive MIMO and intelligent reflecting surfaces,” IEEE open J. Commun. Soc., vol. 1, pp. 1306–1324, 2020.
  12. Y. Han, S. Jin, C.-K. Wen, and T. Q. S. Quek, “Localization and channel reconstruction for extra large RIS-assisted massive MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 1011–1025, 2022.
  13. K. Zhi, C. Pan, H. Ren, K. K. Chai, C.-X. Wang, R. Schober, and X. You, “XL-MIMO with near-field spatial non-stationarities: Low-complexity detector design,” in 2023 IEEE Glob. Commun. Conf., 2023, pp. 7194–7199.
  14. Z. Yuan, J. Zhang, Y. Ji, G. F. Pedersen, and W. Fan, “Spatial non-stationary near-field channel modeling and validation for massive MIMO systems,” IEEE Trans. Antennas Propag., vol. 71, no. 1, pp. 921–933, 2023.
  15. E. D. Carvalho, A. Ali, A. Amiri, M. Angjelichinoski, and R. W. Heath, “Non-stationarities in extra-large-scale massive MIMO,” IEEE Wirel. Commun., vol. 27, no. 4, pp. 74–80, 2020.
  16. J. Flordelis, X. Li, O. Edfors, and F. Tufvesson, “Massive MIMO extensions to the COST 2100 channel model: Modeling and validation,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 380–394, 2020.
  17. M. Cui and L. Dai, “Channel estimation for extremely large-scale MIMO: Far-field or near-field?” IEEE Trans. Commun., vol. 70, no. 4, pp. 2663–2677, 2022.
  18. W. Liu, H. Ren, C. Pan, and J. Wang, “Deep learning based beam training for extremely large-scale massive MIMO in near-field domain,” IEEE Commun. Lett., vol. 27, no. 1, pp. 170–174, 2023.
  19. Y. Zhang, X. Wu, and C. You, “Fast near-field beam training for extremely large-scale array,” IEEE Wireless Commun. Lett., vol. 11, no. 12, pp. 2625–2629, 2022.
  20. X. Wei and L. Dai, “Channel estimation for extremely large-scale massive MIMO,” IEEE Commun. Lett.
  21. Z. Hu, C. Chen, Y. Jin, L. Zhou, and Q. Wei, “Hybrid-field channel estimation for extremely large-scale massive MIMO system,” IEEE Commun. Lett., vol. 27, no. 1, pp. 303–307, 2023.
  22. Y. Han, S. Jin, C.-K. Wen, and X. Ma, “Channel estimation for extremely large-scale massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 633–637, 2020.
  23. Y. Chen and L. Dai, “Non-stationary channel estimation for extremely large-scale MIMO,” IEEE Trans. Wireless Commun., pp. 1–15, 2023, early access, doi: 10.1109/TWC.2023.3343740.
  24. X. Cheng, K. Xu, J. Sun, and S. Li, “Adaptive grouping sparse bayesian learning for channel estimation in non-stationary uplink massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4184–4198, 2019.
  25. H. Iimori, T. Takahashi, K. Ishibashi, G. T. F. de Abreu, D. González G., and O. Gonsa, “Joint activity and channel estimation for extra-large MIMO systems,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7253–7270, 2022.
  26. Y. Zhu, H. Guo, and V. K. N. Lau, “Bayesian channel estimation in multi-user massive MIMO with extremely large antenna array,” IEEE Trans. Signal Process., vol. 69, pp. 5463–5478, 2021.
  27. X. Yu, W. Shen, R. Zhang, C. Xing, and T. Q. S. Quek, “Channel estimation for XL-RIS-aided millimeter-wave systems,” IEEE Trans. Commun., vol. 71, no. 9, pp. 5519–5533, 2023.
  28. A. Tang, J.-B. Wang, Y. Pan, W. Zhang, Y. Chen, H. Yu, and R. C. De Lamare, “Joint Visibility Region and Channel Estimation for Extremely Large-scale MIMO Systems,” arXiv e-prints, p. arXiv:2311.09490, Nov. 2023.
  29. J. Gao, C. Zhong, G. Y. Li, J. B. Soriaga, and A. Behboodi, “Deep learning-based channel estimation for wideband hybrid mmwave massive MIMO,” IEEE Trans. Commun., vol. 71, no. 6, pp. 3679–3693, 2023.
  30. J. Wu, S. Kim, and B. Shim, “Parametric sparse channel estimation for RIS-assisted terahertz systems,” IEEE Trans. Commun., pp. 1–1, 2023.
  31. J. He, H. Wymeersch, and M. Juntti, “Channel estimation for RIS-aided mmwave MIMO systems via atomic norm minimization,” IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 5786–5797, 2021.
  32. Z. Yang and L. Xie, “Exact joint sparse frequency recovery via optimization methods,” IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5145–5157, 2016.
  33. T. Ma, Y. Xiao, and X. Lei, “Channel reconstruction-aided MUSIC algorithms for joint AoA and AoD estimation in MIMO systems,” IEEE Wireless Commun. Lett., vol. 12, no. 2, pp. 322–326, 2023.
  34. A. Liao, Z. Gao, H. Wang, S. Chen, M.-S. Alouini, and H. Yin, “Closed-loop sparse channel estimation for wideband millimeter-wave full-dimensional MIMO systems,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8329–8345, 2019.
  35. Z. Yuan, Q. Guo, and M. Luo, “Approximate message passing with unitary transformation for robust bilinear recovery,” IEEE Trans. Signal Process., vol. 69, pp. 617–630, 2021.
  36. Y. Guo, P. Sun, Z. Yuan, C. Huang, Q. Guo, Z. Wang, and C. Yuen, “Efficient channel estimation for RIS-aided MIMO communications with unitary approximate message passing,” IEEE Trans. Wireless Commun., vol. 22, no. 2, pp. 1403–1416, 2023.
  37. Q. Zou, H. Zhang, and H. Yang, “Multi-layer bilinear generalized approximate message passing,” IEEE Trans. Signal Process., vol. 69, pp. 4529–4543, 2021.
  38. L. Mo, X. Lu, J. Yuan, C. Zhang, Z. Wang, and P. Popovski, “Generalized unitary approximate message passing for double linear transformation model,” IEEE Trans. Signal Process., vol. 71, pp. 1524–1538, 2023.
  39. S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,” in 2011 IEEE Int. Symp. Inf. Theor. Proc., 2011, pp. 2168–2172.
  40. P. Schniter and S. Rangan, “Compressive phase retrieval via generalized approximate message passing,” IEEE Trans. Signal Process., vol. 63, no. 4, pp. 1043–1055, 2015.
  41. R. B. Di Renna and R. C. de Lamare, “Joint channel estimation, activity detection and data decoding based on dynamic message-scheduling strategies for mMTC,” IEEE Trans. Commun., vol. 70, no. 4, pp. 2464–2479, 2022.
  42. S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message passing,” IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6664–6684, 2019.
  43. W. Zhu, M. Tao, X. Yuan, and Y. Guan, “Message passing-based joint user activity detection and channel estimation for temporally-correlated massive access,” IEEE Trans. Commun., vol. 71, no. 6, pp. 3576–3591, 2023.

Summary

We haven't generated a summary for this paper yet.