Logical Gates and Read-Out of Superconducting Gottesman-Kitaev-Preskill Qubits (2403.02396v2)
Abstract: The Gottesman-Kitaev-Preskill (GKP) code is an exciting route to fault-tolerant quantum computing since Gaussian resources and GKP Pauli-eigenstate preparation are sufficient to achieve universal quantum computing. In this work, we provide a practical proposal to perform Clifford gates and state read-out in GKP codes implemented with active error correction in superconducting circuits. We present a method of performing Clifford circuits without physically implementing any single-qubit gates, reducing the potential for them to spread errors in the system. In superconducting circuits, all the required two-qubit gates can be implemented with a single piece of hardware. We analyze the error-spreading properties of GKP Clifford gates and describe how a modification in the decoder following the implementation of each gate can reduce the gate infidelity by multiple orders of magnitude. Moreover, we develop a simple analytical technique to estimate the effect of loss and dephasing on GKP codes that matches well with numerics. Finally, we consider the effect of homodyne measurement inefficiencies on logical state read-out and present a scheme that implements a measurement with a $0.1\%$ error rate in $630$ ns assuming an efficiency of just~$75\%$.
- I. L. Chuang, D. W. Leung, and Y. Yamamoto, Physical Review A 56, 1114 (1997).
- P. T. Cochrane, G. J. Milburn, and W. J. Munro, Physical Review A 59, 2631 (1999).
- D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64 (2001).
- K. Noh and C. Chamberland, Physical Review A 101, 012316 (2020).
- K. Noh, C. Chamberland, and F. G. Brandão, PRX Quantum 3, 010315 (2022).
- H. Yamasaki, T. Matsuura, and M. Koashi, Physical Review Research 2, 023270 (2020).
- A. L. Grimsmo and S. Puri, PRX Quantum 2, 020101 (2021).
- J. Hastrup and U. L. Andersen, Physical Review A 108, 052413 (2023).
- M. H. Shaw, A. C. Doherty, and A. L. Grimsmo, PRX Quantum 5, 010331 (2024).
- P. Warszawski, H. M. Wiseman, and A. C. Doherty, Physical Review A 102, 042210 (2020).
- N. C. Menicucci, Physical review letters 112, 120504 (2014).
- B. Terhal and D. Weigand, Physical Review A 93, 012315 (2016).
- B. Royer, S. Singh, and S. Girvin, Physical Review Letters 125, 260509 (2020).
- B. Royer, S. Singh, and S. Girvin, PRX Quantum 3, 010335 (2022).
- K. Fukui, Physical Review A 107, 052414 (2023).
- J. W. Harrington, Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes, Ph.D. thesis (2004).
- J. Conrad, J. Eisert, and F. Arzani, Quantum 6, 648 (2022).
- P.-O. Löwdin, The Journal of Chemical Physics 18, 365 (1950).
- C. Chamberland, P. Iyer, and D. Poulin, Quantum 2, 43 (2018).
- M. A. Nielsen and I. Chuang, Quantum computation and quantum information (2002).
- M. A. Nielsen, Physics Letters A 303, 249 (2002).
- Z. Cai and S. C. Benjamin, Scientific reports 9, 11281 (2019).
- J. Eisert and M. M. Wolf, arXiv preprint quant-ph/0505151 (2005).
- K. Noh, V. V. Albert, and L. Jiang, IEEE Transactions on Information Theory 65, 2563 (2018).
- H. Wiseman, Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, 205 (1996).
- H. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge university press, 2009).