Robust suppression of noise propagation in GKP error-correction (2302.12088v3)
Abstract: Straightforward logical operations contrasting with complex state preparation are the haLLMarks of the bosonic encoding proposed by Gottesman, Kitaev and Preskill (GKP). The recently reported generation and error-correction of GKP qubits in trapped ions and superconducting circuits thus holds great promise for the future of quantum computing architectures based on such encoded qubits. However, these experiments rely on error-syndrome detection via an auxiliary physical qubit, whose noise may propagate and corrupt the encoded GKP qubit. We propose a simple module composed of two oscillators and a physical qubit, operated with two experimentally accessible quantum gates and elementary feedback controls to implement an error-corrected GKP qubit protected from such propagating errors. In the idealized setting of periodic GKP states, we develop efficient numerical methods to optimize our protocol parameters and show that errors of the encoded qubit stemming from flips of the physical qubit and diffusion of the oscillators state in phase-space may be exponentially suppressed as the noise strength over individual operations is decreased. Our approach circumvents the main roadblock towards fault-tolerant quantum computation with GKP qubits.
- Daniel Gottesman, Alexei Kitaev, and John Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A 64, 012310 (2001).
- Arne L Grimsmo and Shruti Puri, “Quantum error correction with the Gottesman-Kitaev-Preskill code,” PRX Quantum 2, 020101 (2021).
- Kosuke Fukui, Akihisa Tomita, Atsushi Okamoto, and Keisuke Fujii, “High-threshold fault-tolerant quantum computation with analog quantum error correction,” Physical review X 8, 021054 (2018).
- Christophe Vuillot, Hamed Asasi, Yang Wang, Leonid P Pryadko, and Barbara M Terhal, “Quantum error correction with the toric Gottesman-Kitaev-Preskill code,” Physical Review A 99, 032344 (2019).
- Barbara M Terhal, Jonathan Conrad, and Christophe Vuillot, “Towards scalable bosonic quantum error correction,” Quantum Science and Technology 5, 043001 (2020).
- Kyungjoo Noh and Christopher Chamberland, “Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code,” Physical Review A 101, 012316 (2020).
- Kyungjoo Noh, Christopher Chamberland, and Fernando GSL Brandão, “Low-overhead fault-tolerant quantum error correction with the surface-gkp code,” PRX Quantum 3, 010315 (2022).
- Philippe Campagne-Ibarcq, Alec Eickbusch, Steven Touzard, Evan Zalys-Geller, Nicholas E Frattini, Volodymyr V Sivak, Philip Reinhold, Shruti Puri, Shyam Shankar, Robert J Schoelkopf, et al., “Quantum error correction of a qubit encoded in grid states of an oscillator,” Nature 584, 368–372 (2020).
- VV Sivak, Alec Eickbusch, Baptiste Royer, Shraddha Singh, Ioannis Tsioutsios, Suhas Ganjam, Alessandro Miano, BL Brock, AZ Ding, Luigi Frunzio, et al., “Real-time quantum error correction beyond break-even,” Nature 616, 50–55 (2023).
- Operators q^asubscript^𝑞𝑎\hat{q}_{a}over^ start_ARG italic_q end_ARG start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and p^asubscript^𝑝𝑎\hat{p}_{a}over^ start_ARG italic_p end_ARG start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT with equal fluctuations and verifying [q^a,p^a]=isubscript^𝑞𝑎subscript^𝑝𝑎𝑖[\hat{q}_{a},\hat{p}_{a}]=i[ over^ start_ARG italic_q end_ARG start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , over^ start_ARG italic_p end_ARG start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ] = italic_i.
- Baptiste Royer, Shraddha Singh, and SM Girvin, “Stabilization of finite-energy Gottesman-Kitaev-Preskill states,” Physical Review Letters 125, 260509 (2020).
- Brennan de Neeve, Thanh-Long Nguyen, Tanja Behrle, and Jonathan P Home, “Error correction of a logical grid state qubit by dissipative pumping,” Nature Physics 18, 296–300 (2022).
- A Yu Kitaev, “Quantum measurements and the abelian stabilizer problem,” arXiv preprint quant-ph/9511026 (1995).
- BC Travaglione and Gerard J Milburn, “Preparing encoded states in an oscillator,” Phys. Rev. A 66, 052322 (2002).
- S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous variable encoding by ponderomotive interaction,” Eur. Phys. J. D 37, 283–290 (2006).
- Krysta M Svore, Matthew B Hastings, and Michael Freedman, “Faster phase estimation,” arXiv preprint arXiv:1304.0741 (2013).
- BM Terhal and Daniel Weigand, “Encoding a qubit into a cavity mode in circuit QED using phase estimation,” Phys. Rev. A 93, 012315 (2016).
- Keith R Motes, Ben Q Baragiola, Alexei Gilchrist, and Nicolas C Menicucci, “Encoding qubits into oscillators with atomic ensembles and squeezed light,” Phys. Rev. A 95, 053819 (2017).
- Daniel J Weigand and Barbara M Terhal, “Realizing modular quadrature measurements via a tunable photon-pressure coupling in circuit QED,” Physical Review A 101, 053840 (2020).
- Christa Flühmann, Vlad Negnevitsky, Matteo Marinelli, and Jonathan P Home, “Sequential modular position and momentum measurements of a trapped ion mechanical oscillator,” Phys. Rev. X 8, 021001 (2018).
- Christa Flühmann, Thanh Long Nguyen, Matteo Marinelli, Vlad Negnevitsky, Karan Mehta, and JP Home, “Encoding a qubit in a trapped-ion mechanical oscillator,” Nature 566, 513 (2019).
- Eliot Kapit, “Error-transparent quantum gates for small logical qubit architectures,” Physical review letters 120, 050503 (2018).
- Shruti Puri, Alexander Grimm, Philippe Campagne-Ibarcq, Alec Eickbusch, Kyungjoo Noh, Gabrielle Roberts, Liang Jiang, Mazyar Mirrahimi, Michel H Devoret, and Steven M Girvin, “Stabilized cat in a driven nonlinear cavity: a fault-tolerant error syndrome detector,” Physical Review X 9, 041009 (2019).
- Yunong Shi, Christopher Chamberland, and Andrew Cross, “Fault-tolerant preparation of approximate gkp states,” New Journal of Physics 21, 093007 (2019).
- Wen-Long Ma, Mengzhen Zhang, Yat Wong, Kyungjoo Noh, Serge Rosenblum, Philip Reinhold, Robert J Schoelkopf, and Liang Jiang, “Path-independent quantum gates with noisy ancilla,” Physical Review Letters 125, 110503 (2020).
- Os Vy, Xiaoting Wang, and Kurt Jacobs, “Error-transparent evolution: the ability of multi-body interactions to bypass decoherence,” New Journal of Physics 15, 053002 (2013).
- Serge Rosenblum, Philip Reinhold, Mazyar Mirrahimi, Liang Jiang, Luigi Frunzio, and Robert J Schoelkopf, “Fault-tolerant detection of a quantum error,” Science 361, 266–270 (2018).
- Philip Reinhold, Serge Rosenblum, Wen-Long Ma, Luigi Frunzio, Liang Jiang, and Robert J Schoelkopf, “Error-corrected gates on an encoded qubit,” Nature Physics 16, 822–826 (2020).
- Alexander Grimm, Nicholas E Frattini, Shruti Puri, Shantanu O Mundhada, Steven Touzard, Mazyar Mirrahimi, Steven M Girvin, Shyam Shankar, and Michel H Devoret, “Stabilization and operation of a Kerr-cat qubit,” Nature 584, 205–209 (2020).
- Nicholas E Frattini, Rodrigo G Cortiñas, Jayameenakshi Venkatraman, Xu Xiao, Qile Su, Chan U Lei, Benjamin J Chapman, Vidul R Joshi, SM Girvin, Robert J Schoelkopf, et al., “The squeezed Kerr oscillator: spectral kissing and phase-flip robustness,” arXiv preprint arXiv:2209.03934 (2022).
- Scott Glancy and Emanuel Knill, “Error analysis for encoding a qubit in an oscillator,” Physical Review A 73, 012325 (2006).
- Kasper Duivenvoorden, Barbara M Terhal, and Daniel Weigand, “Single-mode displacement sensor,” Physical Review A 95, 012305 (2017).
- With the definition 𝐩~a⟂L=−𝐪~aLsubscriptsuperscript~𝐩perpendicular-toabsent𝐿𝑎subscriptsuperscript~𝐪𝐿𝑎\tilde{{\bf p}}^{\perp L}_{a}=-\tilde{{\bf q}}^{L}_{a}over~ start_ARG bold_p end_ARG start_POSTSUPERSCRIPT ⟂ italic_L end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = - over~ start_ARG bold_q end_ARG start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT.
- Joshua Zak, “Finite translations in solid-state physics,” Physical Review Letters 19, 1385 (1967).
- Baptiste Royer, Shraddha Singh, and Steven M Girvin, “Encoding qubits in multimode grid states,” PRX Quantum 3, 010335 (2022).
- Ofir Milul, Barkay Guttel, Uri Goldblatt, Sergey Hazanov, Lalit M Joshi, Daniel Chausovsky, Nitzan Kahn, Engin Çiftyürek, Fabien Lafont, and Serge Rosenblum, “A superconducting quantum memory with tens of milliseconds coherence time,” arXiv preprint arXiv:2302.06442 (2023).
- Alexander PM Place, Lila VH Rodgers, Pranav Mundada, Basil M Smitham, Mattias Fitzpatrick, Zhaoqi Leng, Anjali Premkumar, Jacob Bryon, Andrei Vrajitoarea, Sara Sussman, et al., “New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds,” Nature communications 12, 1779 (2021).
- Chenlu Wang, Xuegang Li, Huikai Xu, Zhiyuan Li, Junhua Wang, Zhen Yang, Zhenyu Mi, Xuehui Liang, Tang Su, Chuhong Yang, et al., “Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds,” npj Quantum Information 8, 3 (2022).
- Alec Eickbusch, Volodymyr Sivak, Andy Z Ding, Salvatore S Elder, Shantanu R Jha, Jayameenakshi Venkatraman, Baptiste Royer, SM Girvin, Robert J Schoelkopf, and Michel H Devoret, “Fast universal control of an oscillator with weak dispersive coupling to a qubit,” Nature Physics 18, 1464–1469 (2022).
- Ilan Tzitrin, J Eli Bourassa, Nicolas C Menicucci, and Krishna Kumar Sabapathy, “Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes,” Physical Review A 101, 032315 (2020).
- Yaxing Zhang, Brian J Lester, Yvonne Y Gao, Liang Jiang, RJ Schoelkopf, and SM Girvin, “Engineering bilinear mode coupling in circuit QED: Theory and experiment,” Physical Review A 99, 012314 (2019).
- Axel M Eriksson, Théo Sépulcre, Mikael Kervinen, Timo Hillmann, Marina Kudra, Simon Dupouy, Yong Lu, Maryam Khanahmadi, Jiaying Yang, Claudia Castillo Moreno, et al., “Universal control of a bosonic mode via drive-activated native cubic interactions,” arXiv preprint arXiv:2308.15320 (2023).
- Yao Lu, Aniket Maiti, John WO Garmon, Suhas Ganjam, Yaxing Zhang, Jahan Claes, Luigi Frunzio, SM Girvin, and Robert J Schoelkopf, “A high-fidelity microwave beamsplitter with a parity-protected converter,” arXiv preprint arXiv:2303.00959 (2023).
- Howard M Wiseman and Gerard J Milburn, Quantum measurement and control (Cambridge university press, 2009).
- D Ristè, CC Bultink, Konrad W Lehnert, and L DiCarlo, “Feedback control of a solid-state qubit using high-fidelity projective measurement,” Physical review letters 109, 240502 (2012).
- Philippe Campagne-Ibarcq, Emmanuel Flurin, Nicolas Roch, David Darson, Pascal Morfin, Mazyar Mirrahimi, Michel H Devoret, François Mallet, and Benjamin Huard, “Persistent control of a superconducting qubit by stroboscopic measurement feedback,” Physical Review X 3, 021008 (2013).