Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

No massive black holes in the Milky Way halo (2403.02386v3)

Published 4 Mar 2024 in astro-ph.GA, astro-ph.CO, gr-qc, hep-ex, and hep-ph

Abstract: The gravitational wave detectors have unveiled a population of massive black holes that do not resemble those observed in the Milky Way and whose origin is debated. According to one possible explanation, these black holes may have formed from density fluctuations in the early Universe (primordial black holes), and they should comprise from several to 100% of dark matter to explain the observed black hole merger rates. If such black holes existed in the Milky Way dark matter halo, they would cause long-timescale gravitational microlensing events lasting years. The previous experiments were not sufficiently sensitive to such events. Here we present the results of the search for long-timescale microlensing events among the light curves of nearly 80 million stars located in the Large Magellanic Cloud that were monitored for 20 years by the OGLE survey. We did not find any events with timescales longer than one year, whereas all shorter events detected may be explained by known stellar populations. We find that compact objects in the mass range from $1.8 \times 10{-4}$ to $6.3\,M_{\odot}$ cannot compose more than 1% of dark matter, and those in the mass range from $1.3 \times 10{-5}$ to $860\,M_{\odot}$ cannot make up more than 10% of dark matter. Thus, primordial black holes in this mass range cannot simultaneously explain a significant fraction of dark matter and gravitational wave events.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. Abbott, B. P. et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102 (2016). [2] Abbott, B. P. et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 9, 031040 (2019). [3] Abbott, R. et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. ApJ 913, L7 (2021). [4] Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016). [5] Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Abbott, B. P. et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 9, 031040 (2019). [3] Abbott, R. et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. ApJ 913, L7 (2021). [4] Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016). [5] Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Abbott, R. et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. ApJ 913, L7 (2021). [4] Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016). [5] Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016). [5] Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  2. Abbott, B. P. et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 9, 031040 (2019). [3] Abbott, R. et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. ApJ 913, L7 (2021). [4] Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016). [5] Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Abbott, R. et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. ApJ 913, L7 (2021). [4] Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016). [5] Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016). [5] Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  3. Abbott, R. et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. ApJ 913, L7 (2021). [4] Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016). [5] Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016). [5] Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  4. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature 534, 512–515 (2016). [5] Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  5. MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters. MNRAS 464, L36–L40 (2017). [6] Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  6. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 120, 151101 (2018). [7] Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  7. Bird, S. et al. Did LIGO Detect Dark Matter? Phys. Rev. Lett. 116, 201301 (2016). [8] Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sasaki, M., Suyama, T., Tanaka, T. & Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  8. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 117, 061101 (2016). [9] Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clesse, S. & García-Bellido, J. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  9. The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO. Phys. Dark Universe 15, 142–147 (2017). [10] Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Carr, B., Clesse, S., García-Bellido, J. & Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  10. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 31, 100755 (2021). [11] Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  11. Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 126, 051302 (2021). [12] Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Escrivà, A., Bagui, E. & Clesse, S. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  12. Simulations of PBH formation at the QCD epoch and comparison with the GWTC-3 catalog. J. Cosmology Astropart. Phys 2023, 004 (2023). [13] Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  13. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015). [14] Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  14. Paczyński, B. Gravitational microlensing by the galactic halo. ApJ 304, 1–5 (1986). [15] Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  15. Alcock, C. et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. ApJ 542, 281–307 (2000). [16] Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  16. Tisserand, P. et al. Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. A&A 469, 387–404 (2007). [17] Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  17. Wyrzykowski, L. et al. The OGLE view of microlensing towards the Magellanic Clouds - IV. OGLE-III SMC data and final conclusions on MACHOs. MNRAS 416, 2949–2961 (2011). [18] Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  18. Blaineau, T. et al. New limits from microlensing on Galactic black holes in the mass range 10 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT < M < 1000 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. A&A 664, A106 (2022). [19] Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  19. Udalski, A. The Optical Gravitational Lensing Experiment. Real Time Data Analysis Systems in the OGLE-III Survey. Acta Astron. 53, 291–305 (2003). [20] Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  20. Mróz, P. et al. Microlensing optical depth and event rate toward the Large Magellanic Cloud based on 20 years of OGLE observations. submitted (2024). [21] Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Holtzman, J. A., Afonso, C. & Dolphin, A. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  21. The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2. ApJS 166, 534–548 (2006). [22] Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  22. Mróz, P. et al. No large population of unbound or wide-orbit Jupiter-mass planets. Nature 548, 183–186 (2017). [23] Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  23. Cautun, M. et al. The milky way total mass profile as inferred from Gaia DR2. MNRAS 494, 4291–4313 (2020). [24] Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Han, C. & Gould, A. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  24. Stellar Contribution to the Galactic Bulge Microlensing Optical Depth. ApJ 592, 172–175 (2003). [25] Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  25. Niikura, H. et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nature Astronomy 3, 524–534 (2019). [26] Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  26. Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994). [27] Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  27. Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. MNRAS 487, 2685–2700 (2019). [28] Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  28. Jiao, Y. et al. Detection of the Keplerian decline in the Milky Way rotation curve. A&A 678, A208 (2023). [29] Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Clanton, C. & Gaudi, B. S. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  29. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. I. Methodology. ApJ 791, 90 (2014). [30] Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Eilers, A.-C., Hogg, D. W., Rix, H.-W. & Ness, M. K. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  30. The Circular Velocity Curve of the Milky Way from 5 to 25 kpc. ApJ 871, 120 (2019). [31] Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  31. Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 446, 521–554 (2015). [32] Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  32. Fattahi, A. et al. The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection. MNRAS 457, 844–856 (2016). [33] Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  33. Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. MNRAS 467, 179–207 (2017). [34] Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  34. Griest, K. et al. Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. ApJ 372, L79–L82 (1991). [35] Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  35. Varma, V. et al. Evidence of Large Recoil Velocity from a Black Hole Merger Signal. Phys. Rev. Lett. 128, 191102 (2022). [36] Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  36. Koposov, S. E. et al. Piercing the Milky Way: an all-sky view of the Orphan Stream. MNRAS 485, 4726–4742 (2019). [37] van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  37. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ 781, 121 (2014). [38] Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  38. Kroupa, P. On the variation of the initial mass function. MNRAS 322, 231–246 (2001). [39] Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gyuk, G., Dalal, N. & Griest, K. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  39. Self-lensing Models of the Large Magellanic Cloud. ApJ 535, 90–103 (2000). [40] van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). van der Marel, R. P., Alves, D. R., Hardy, E. & Suntzeff, N. B. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  40. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics. AJ 124, 2639–2663 (2002). [41] Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  41. Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019). [42] Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  42. emcee: The MCMC Hammer. PASP 125, 306 (2013). [43] Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  43. Kim, S. et al. An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ 503, 674–688 (1998). [44] Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Ou, X., Eilers, A.-C., Necib, L. & Frebel, A. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  44. The dark matter profile of the Milky Way inferred from its circular velocity curve. MNRAS 528, 693–710 (2024). [45] Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  45. Gaia Collaboration et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. A&A 616, A12 (2018). [46] Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021). Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
  46. Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. A&A 649, A2 (2021).
Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper demonstrates that the absence of long-timescale microlensing events rules out massive black holes in the Milky Way halo.
  • It analyzes 20 years of OGLE data from 78.7 million LMC stars to impose strict constraints on the mass contributions of compact objects to dark matter.
  • The findings limit primordial black holes to less than 10% of dark matter, challenging their proposed role in explaining gravitational wave events.

No Massive Black Holes in the Milky Way Halo

The paper presents a comprehensive paper on the possibility of massive black holes being a significant component of the Milky Way's dark matter halo, specifically examining the role of primordial black holes (PBHs) in this context. The research employed the Optical Gravitational Lensing Experiment (OGLE) survey data to search for long-timescale gravitational microlensing events caused by massive compact objects distributed throughout the Milky Way halo.

Methodology and Findings

The paper utilized a dataset spanning 20 years (2001-2020) from the OGLE-III and OGLE-IV phases, observing 78.7 million stars in the Large Magellanic Cloud (LMC). The findings reveal no microlensing events lasting longer than one year, implying an absence of massive black holes within the dark matter halo in the mass range capable of causing such long-duration events.

Thirteen microlensing events were detected, all with timescales of less than one year, attributable to mass distributions in the LMC or the Milky Way disk. This discovery challenges the hypothesis that PBHs could constitute a significant fraction of dark matter.

Numerical analysis shows that compact objects with masses ranging from 1.8×104M1.8 \times 10^{-4}\,M_{\odot} to 6.3M6.3\,M_{\odot} cannot account for more than 1% of dark matter, and those in the mass range of 1.3×105M1.3 \times 10^{-5}\,M_{\odot} to 860M860\,M_{\odot} less than 10%. These constraints effectively rule out PBHs as a dominant component of dark matter and a major contributor to observed gravitational wave events.

Implications and Future Directions

The implications of these findings are significant in ruling out the PBH-dominated dark matter hypothesis. It addresses critical issues related to the sources of gravitational waves detected in recent years, suggesting alternative sources are necessary. This paper also refines the methodologies for microlensing data analysis and event detection efficiency, enhancing the reliability of constraints on dark matter components.

Future work in this area could focus on further improving detection methods for shorter-timescale events or exploring additional models of the distribution and characteristics of compact objects in the galactic halo. The research underscores the importance of extensive, long-term photometric surveys in unraveling dark matter's nature, encouraging further observational campaigns and theoretical analyses to explore the non-luminous components of galaxies.

Overall, this paper provides a robust framework for interpreting microlensing observations and sets a precedent for subsequent inquiries into the constituents of dark matter, emphasizing the ongoing necessity to integrate astrophysical observations with cosmological theories.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com