Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Nonlinear Stability of Black Holes with a Stable Light Ring (2403.02089v2)

Published 4 Mar 2024 in gr-qc

Abstract: Recently, ultracompact objects have been found to be susceptible to a new nonlinear instability, known as the light-ring instability, triggered by stable light rings. This discovery raises concerns about the viability of these objects as alternatives to black holes. In this work, we investigate the presence of the light-ring instability in scalarized Reissner-Nordstr\"om black holes, which have been previously shown to admit stable light rings. We employ fully nonlinear numerical evolutions of both scalarized black holes with and without stable light rings, perturbing them initially with spherically symmetric scalar perturbations. Our simulations demonstrate the long-term stability of these scalarized black holes, suggesting that the presence of a stable light ring may not necessarily induce the light-ring instability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (94)
  1. B.P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016. arXiv:1602.03837, doi:10.1103/PhysRevLett.116.061102.
  2. Hans-Peter Nollert. TOPICAL REVIEW: Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars. Class. Quant. Grav., 16:R159–R216, 1999. doi:10.1088/0264-9381/16/12/201.
  3. Mining information from binary black hole mergers: A Comparison of estimation methods for complex exponentials in noise. Phys. Rev. D, 75:124017, 2007. arXiv:gr-qc/0701086, doi:10.1103/PhysRevD.75.124017.
  4. Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett., 116(17):171101, 2016. [Erratum: Phys.Rev.Lett. 117, 089902 (2016)]. arXiv:1602.07309, doi:10.1103/PhysRevLett.116.171101.
  5. Gravitational wave sources: reflections and echoes. Class. Quant. Grav., 34(22):225005, 2017. arXiv:1702.04833, doi:10.1088/1361-6382/aa8f29.
  6. Black Hole Ringdown: The Importance of Overtones. Phys. Rev. X, 9(4):041060, 2019. arXiv:1903.08284, doi:10.1103/PhysRevX.9.041060.
  7. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019. arXiv:1906.11238, doi:10.3847/2041-8213/ab0ec7.
  8. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019. arXiv:1906.11239, doi:10.3847/2041-8213/ab0c96.
  9. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett., 875(1):L3, 2019. arXiv:1906.11240, doi:10.3847/2041-8213/ab0c57.
  10. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4, 2019. arXiv:1906.11241, doi:10.3847/2041-8213/ab0e85.
  11. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5, 2019. arXiv:1906.11242, doi:10.3847/2041-8213/ab0f43.
  12. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019. arXiv:1906.11243, doi:10.3847/2041-8213/ab1141.
  13. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett., 910(1):L12, 2021. arXiv:2105.01169, doi:10.3847/2041-8213/abe71d.
  14. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett., 910(1):L13, 2021. arXiv:2105.01173, doi:10.3847/2041-8213/abe4de.
  15. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022. doi:10.3847/2041-8213/ac6674.
  16. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett., 930(2):L13, 2022. doi:10.3847/2041-8213/ac6675.
  17. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett., 930(2):L14, 2022. doi:10.3847/2041-8213/ac6429.
  18. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophys. J. Lett., 930(2):L15, 2022. doi:10.3847/2041-8213/ac6736.
  19. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett., 930(2):L16, 2022. doi:10.3847/2041-8213/ac6672.
  20. Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett., 930(2):L17, 2022. doi:10.3847/2041-8213/ac6756.
  21. New approach to the quasinormal modes of a black hole. Phys. Rev. D, 30:295–304, 1984. doi:10.1103/PhysRevD.30.295.
  22. Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D, 79:064016, 2009. arXiv:0812.1806, doi:10.1103/PhysRevD.79.064016.
  23. Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation. Phys. Rev. D, 86:104006, 2012. arXiv:1207.4253, doi:10.1103/PhysRevD.86.104006.
  24. R. A. Konoplya and Z. Stuchlík. Are eikonal quasinormal modes linked to the unstable circular null geodesics? Phys. Lett. B, 771:597–602, 2017. arXiv:1705.05928, doi:10.1016/j.physletb.2017.06.015.
  25. Kimet Jusufi. Quasinormal Modes of Black Holes Surrounded by Dark Matter and Their Connection with the Shadow Radius. Phys. Rev. D, 101(8):084055, 2020. arXiv:1912.13320, doi:10.1103/PhysRevD.101.084055.
  26. Analytical correspondence between shadow radius and black hole quasinormal frequencies. Phys. Lett. B, 811:135966, 2020. arXiv:2005.09761, doi:10.1016/j.physletb.2020.135966.
  27. Quasinormal modes in two-photon autocorrelation and the geometric-optics approximation. 9 2021. arXiv:2109.02844.
  28. Jose P. S. Lemos and Oleg B. Zaslavskii. Black hole mimickers: Regular versus singular behavior. Phys. Rev. D, 78:024040, 2008. arXiv:0806.0845, doi:10.1103/PhysRevD.78.024040.
  29. Lensing and dynamics of ultracompact bosonic stars. Phys. Rev. D, 96(10):104040, 2017. arXiv:1709.06118, doi:10.1103/PhysRevD.96.104040.
  30. Pedro V. P. Cunha and Carlos A. R. Herdeiro. Shadows and strong gravitational lensing: a brief review. Gen. Rel. Grav., 50(4):42, 2018. arXiv:1801.00860, doi:10.1007/s10714-018-2361-9.
  31. A novel gravitational lensing feature by wormholes. Phys. Lett. B, 789:270–275, 2019. [Erratum: Phys.Lett.B 791, 422–423 (2019)]. arXiv:1811.08245, doi:10.1016/j.physletb.2018.12.030.
  32. Observing a Wormhole. Phys. Rev. D, 100(8):083513, 2019. arXiv:1910.00429, doi:10.1103/PhysRevD.100.083513.
  33. Charged Ellis Wormhole and Black Bounce. Phys. Rev. D, 100(12):124063, 2019. arXiv:1909.04603, doi:10.1103/PhysRevD.100.124063.
  34. Sensitive searches for wormholes. Phys. Rev. D, 104(8):L081502, 2021. arXiv:2007.12184, doi:10.1103/PhysRevD.104.L081502.
  35. Reflection-asymmetric wormholes and their double shadows. Phys. Rev. D, 102(8):084044, 2020. arXiv:2008.10130, doi:10.1103/PhysRevD.102.084044.
  36. Trapping horizons of the evolving charged wormhole and black bounce. Phys. Rev. D, 104(8):084005, 2021. arXiv:2104.11134, doi:10.1103/PhysRevD.104.084005.
  37. Astrophysical Wormholes. Universe, 7(5):136, 2021. arXiv:2105.00881, doi:10.3390/universe7050136.
  38. Observational signature and additional photon rings of an asymmetric thin-shell wormhole. Phys. Rev. D, 104(12):124010, 2021. arXiv:2102.05488, doi:10.1103/PhysRevD.104.124010.
  39. Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys. Rev. D, 90(4):044069, 2014. arXiv:1406.5510, doi:10.1103/PhysRevD.90.044069.
  40. Echoes of Kerr-like wormholes. Phys. Rev. D, 97(2):024040, 2018. arXiv:1711.00391, doi:10.1103/PhysRevD.97.024040.
  41. A recipe for echoes from exotic compact objects. Phys. Rev. D, 96(8):084002, 2017. arXiv:1706.06155, doi:10.1103/PhysRevD.96.084002.
  42. Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons. Phys. Rev. D, 96(8):082004, 2017. arXiv:1612.00266, doi:10.1103/PhysRevD.96.082004.
  43. Echoes from the Abyss: The Holiday Edition! 1 2017. arXiv:1701.03485.
  44. Decay properties of Klein-Gordon fields on Kerr-AdS spacetimes. Commun. Pure Appl. Math., 66:1751–1802, 2013. arXiv:1110.6794, doi:10.1002/cpa.21470.
  45. Joe Keir. Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars. Class. Quant. Grav., 33(13):135009, 2016. arXiv:1404.7036, doi:10.1088/0264-9381/33/13/135009.
  46. Exotic Compact Objects and the Fate of the Light-Ring Instability. Phys. Rev. Lett., 130(6):061401, 2023. arXiv:2207.13713, doi:10.1103/PhysRevLett.130.061401.
  47. Spontaneous Scalarization of Charged Black Holes. Phys. Rev. Lett., 121(10):101102, 2018. arXiv:1806.05190, doi:10.1103/PhysRevLett.121.101102.
  48. Spontaneous Scalarisation of Charged Black Holes: Coupling Dependence and Dynamical Features. Class. Quant. Grav., 36(13):134002, 2019. [Erratum: Class.Quant.Grav. 37, 049501 (2020)]. arXiv:1902.05079, doi:10.1088/1361-6382/ab23a1.
  49. Charged black holes with axionic-type couplings: Classes of solutions and dynamical scalarization. Phys. Rev. D, 100(8):084045, 2019. arXiv:1908.00037, doi:10.1103/PhysRevD.100.084045.
  50. Einstein-Maxwell-scalar black holes: the hot, the cold and the bald. Phys. Lett. B, 806:135493, 2020. arXiv:2002.00963, doi:10.1016/j.physletb.2020.135493.
  51. Scalarized charged black holes with scalar mass term. Phys. Rev. D, 100(12):124055, 2019. arXiv:1909.11859, doi:10.1103/PhysRevD.100.124055.
  52. Pedro G.S. Fernandes. Einstein-Maxwell-scalar black holes with massive and self-interacting scalar hair. Phys. Dark Univ., 30:100716, 2020. arXiv:2003.01045, doi:10.1016/j.dark.2020.100716.
  53. Yan Peng. Scalarization of horizonless reflecting stars: neutral scalar fields non-minimally coupled to Maxwell fields. Phys. Lett. B, 804:135372, 2020. arXiv:1912.11989, doi:10.1016/j.physletb.2020.135372.
  54. Instability of Reissner–Nordström black hole in Einstein-Maxwell-scalar theory. Eur. Phys. J. C, 79(3):273, 2019. arXiv:1808.02609, doi:10.1140/epjc/s10052-019-6792-6.
  55. Stability of scalarized charged black holes in the Einstein–Maxwell–Scalar theory. Eur. Phys. J. C, 79(8):641, 2019. arXiv:1904.09864, doi:10.1140/epjc/s10052-019-7176-7.
  56. Radial perturbations of the scalarized black holes in Einstein-Maxwell-conformally coupled scalar theory. Phys. Rev. D, 102(6):064011, 2020. arXiv:2005.06677, doi:10.1103/PhysRevD.102.064011.
  57. Onset of rotating scalarized black holes in Einstein-Chern-Simons-Scalar theory. Phys. Lett. B, 814:136081, 2021. arXiv:2012.02375, doi:10.1016/j.physletb.2021.136081.
  58. Stability analysis of a charged black hole with a nonlinear complex scalar field. Phys. Rev. D, 104(4):044008, 2021. arXiv:2101.00026, doi:10.1103/PhysRevD.104.044008.
  59. Higher dimensional black hole scalarization. JHEP, 09:186, 2020. arXiv:2007.04153, doi:10.1007/JHEP09(2020)186.
  60. Quasinormal modes of scalarized black holes in the Einstein–Maxwell–Scalar theory. Phys. Lett. B, 790:400–407, 2019. arXiv:1812.03604, doi:10.1016/j.physletb.2019.01.046.
  61. Quasinormal modes of hot, cold and bald Einstein-Maxwell-scalar black holes. 8 2020. arXiv:2008.11744.
  62. Scalarized charged black holes in the Einstein-Maxwell-Scalar theory with two U(1) fields. Phys. Lett. B, 811:135905, 2020. arXiv:2009.05193, doi:10.1016/j.physletb.2020.135905.
  63. Scalarized black holes in the Einstein-Maxwell-scalar theory with a quasitopological term. Phys. Rev. D, 103(2):024010, 2021. arXiv:2011.09665, doi:10.1103/PhysRevD.103.024010.
  64. Topology and spacetime structure influences on black hole scalarization. 12 2020. arXiv:2012.11844.
  65. Scalarization of asymptotically anti–de Sitter black holes with applications to holographic phase transitions. Phys. Rev. D, 101(12):124016, 2020. arXiv:1911.01950, doi:10.1103/PhysRevD.101.124016.
  66. Black Hole Spontaneous Scalarisation with a Positive Cosmological Constant. Phys. Lett. B, 802:135269, 2020. arXiv:1910.05286, doi:10.1016/j.physletb.2020.135269.
  67. Dynamical charged black hole spontaneous scalarization in anti–de Sitter spacetimes. Phys. Rev. D, 104(8):084089, 2021. arXiv:2103.13599, doi:10.1103/PhysRevD.104.084089.
  68. Scalarized Einstein–Maxwell-scalar black holes in anti-de Sitter spacetime. Eur. Phys. J. C, 81(10):864, 2021. arXiv:2102.04015, doi:10.1140/epjc/s10052-021-09614-7.
  69. Nonlinear dynamics of hot, cold and bald Einstein-Maxwell-scalar black holes in AdS spacetime. 7 2023. arXiv:2307.03060.
  70. Critical Phenomena in Dynamical Scalarization of Charged Black Holes. Phys. Rev. Lett., 128(16):161105, 2022. arXiv:2112.07455, doi:10.1103/PhysRevLett.128.161105.
  71. Dynamical transitions in scalarization and descalarization through black hole accretion. Phys. Rev. D, 106(6):L061501, 2022. arXiv:2204.09260, doi:10.1103/PhysRevD.106.L061501.
  72. Type I critical dynamical scalarization and descalarization in Einstein-Maxwell-scalar theory. 6 2023. arXiv:2306.10371.
  73. Scalarized Kerr-Newman black holes. JHEP, 10:076, 2023. arXiv:2307.12210, doi:10.1007/JHEP10(2023)076.
  74. Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 104(2):024003, 2021. arXiv:2104.08703, doi:10.1103/PhysRevD.104.024003.
  75. Photon ring and observational appearance of a hairy black hole. Phys. Rev. D, 104(4):044049, 2021. arXiv:2105.11770, doi:10.1103/PhysRevD.104.044049.
  76. Interferometric Signatures of Black Holes with Multiple Photon Spheres. 12 2023. arXiv:2312.10304.
  77. Gravitational lensing by black holes with multiple photon spheres. Phys. Rev. D, 105(12):124064, 2022. arXiv:2204.13948, doi:10.1103/PhysRevD.105.124064.
  78. Appearance of an infalling star in black holes with multiple photon spheres. Sci. China Phys. Mech. Astron., 65(12):120412, 2022. arXiv:2206.13705, doi:10.1007/s11433-022-1986-x.
  79. Observations of Orbiting Hot Spots around Scalarized Reissner-Nordström Black Holes. 1 2024. arXiv:2401.10905.
  80. Light rings and long-lived modes in quasiblack hole spacetimes. Phys. Rev. D, 105(2):024049, 2022. arXiv:2108.08967, doi:10.1103/PhysRevD.105.024049.
  81. Quasinormal modes of black holes with multiple photon spheres. JHEP, 06:060, 2022. arXiv:2112.14133, doi:10.1007/JHEP06(2022)060.
  82. Echoes from hairy black holes. JHEP, 06:073, 2022. arXiv:2204.00982, doi:10.1007/JHEP06(2022)073.
  83. Superradiance instabilities of charged black holes in Einstein-Maxwell-scalar theory. JHEP, 07:070, 2023. arXiv:2301.06483, doi:10.1007/JHEP07(2023)070.
  84. Quasi-topological Electromagnetism: Dark Energy, Dyonic Black Holes, Stable Photon Spheres and Hidden Electromagnetic Duality. Sci. China Phys. Mech. Astron., 63:240411, 2020. arXiv:1907.10876, doi:10.1007/s11433-019-1446-1.
  85. Echoes from Classical Black Holes. 12 2021. arXiv:2112.14780.
  86. Resummation of Massive Gravity. Phys. Rev. Lett., 106:231101, 2011. arXiv:1011.1232, doi:10.1103/PhysRevLett.106.231101.
  87. Gravitational wave echoes from black holes in massive gravity. Phys. Rev. D, 103(2):024058, 2021. arXiv:2011.04032, doi:10.1103/PhysRevD.103.024058.
  88. Naoki Tsukamoto. Gravitational lensing by two photon spheres in a black-bounce spacetime in strong deflection limits. Phys. Rev. D, 104(6):064022, 2021. arXiv:2105.14336, doi:10.1103/PhysRevD.104.064022.
  89. Naoki Tsukamoto. Linearization stability of reflection-asymmetric thin-shell wormholes with double shadows. Phys. Rev. D, 103(6):064031, 2021. arXiv:2101.07060, doi:10.1103/PhysRevD.103.064031.
  90. Naoki Tsukamoto. Retrolensing by two photon spheres of a black-bounce spacetime. Phys. Rev. D, 105(8):084036, 2022. arXiv:2202.09641, doi:10.1103/PhysRevD.105.084036.
  91. Black holes with multiple photon spheres. Phys. Rev. D, 107(12):124037, 2023. arXiv:2212.12901, doi:10.1103/PhysRevD.107.124037.
  92. The Einstein Toolkit, 2021, To find out more, visit http://einsteintoolkit.org.
  93. Time evolution of Einstein-Maxwell-scalar black holes after a thermal quench. JHEP, 10:176, 2023. arXiv:2308.07666, doi:10.1007/JHEP10(2023)176.
  94. Stability of Schwarzschild-AdS for the spherically symmetric Einstein-Klein-Gordon system. Commun. Math. Phys., 317:205–251, 2013. arXiv:1103.3672, doi:10.1007/s00220-012-1572-2.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.