Superpixel Graph Contrastive Clustering with Semantic-Invariant Augmentations for Hyperspectral Images (2403.01799v1)
Abstract: Hyperspectral images (HSI) clustering is an important but challenging task. The state-of-the-art (SOTA) methods usually rely on superpixels, however, they do not fully utilize the spatial and spectral information in HSI 3-D structure, and their optimization targets are not clustering-oriented. In this work, we first use 3-D and 2-D hybrid convolutional neural networks to extract the high-order spatial and spectral features of HSI through pre-training, and then design a superpixel graph contrastive clustering (SPGCC) model to learn discriminative superpixel representations. Reasonable augmented views are crucial for contrastive clustering, and conventional contrastive learning may hurt the cluster structure since different samples are pushed away in the embedding space even if they belong to the same class. In SPGCC, we design two semantic-invariant data augmentations for HSI superpixels: pixel sampling augmentation and model weight augmentation. Then sample-level alignment and clustering-center-level contrast are performed for better intra-class similarity and inter-class dissimilarity of superpixel embeddings. We perform clustering and network optimization alternatively. Experimental results on several HSI datasets verify the advantages of the proposed method, e.g., on India Pines, our model improves the clustering accuracy from 58.79% to 67.59% compared to the SOTA method.
- C. McCann, K. S. Repasky, R. Lawrence, and S. Powell, “Multi-temporal mesoscale hyperspectral data of mixed agricultural and grassland regions for anomaly detection,” ISPRS J. Photogramm. Remote Sens., vol. 131, pp. 121–133, 2017.
- R. D. M. Scafutto, C. R. de Souza Filho, and W. J. de Oliveira, “Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and monitoring,” ISPRS J. Photogramm. Remote Sens., vol. 128, pp. 146–157, 2017.
- U. Heiden, W. Heldens, S. Roessner, K. Segl, T. Esch, and A. Mueller, “Urban structure type characterization using hyperspectral remote sensing and height information,” Landscape Urban Plann., vol. 105, no. 4, pp. 361–375, 2012.
- J. Moraga and H. S. Duzgun, “Jigsawhsi: a network for hyperspectral image classification,” arXiv:2206.02327, 2022.
- H. Liu, Y. Jia, J. Hou, and Q. Zhang, “Global-local balanced low-rank approximation of hyperspectral images for classification,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 4, pp. 2013–2024, 2022.
- M. Li, Y. Liu, G. Xue, Y. Huang, and G. Yang, “Exploring the relationship between center and neighborhoods: Central vector oriented self-similarity network for hyperspectral image classification,” IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 4, pp. 1979–1993, 2023.
- J. Fan, T. Chen, and S. Lu, “Superpixel guided deep-sparse-representation learning for hyperspectral image classification,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 11, pp. 3163–3173, 2018.
- H. Zhao, F. Zhou, L. Bruzzone, R. Guan, and C. Yang, “Superpixel-level global and local similarity graph-based clustering for large hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–16, 2022.
- Y. Cai, Z. Zhang, P. Ghamisi, Y. Ding, X. Liu, Z. Cai, and R. Gloaguen, “Superpixel contracted neighborhood contrastive subspace clustering network for hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–13, 2022.
- Y. Zhang, Y. Wang, X. Chen, X. Jiang, and Y. Zhou, “Spectral–spatial feature extraction with dual graph autoencoder for hyperspectral image clustering,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 12, pp. 8500–8511, 2022.
- Y. Ding, Z. Zhang, X. Zhao, Y. Cai, S. Li, B. Deng, and W. Cai, “Self-supervised locality preserving low-pass graph convolutional embedding for large-scale hyperspectral image clustering,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–16, 2022.
- T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu, “An efficient k-means clustering algorithm: analysis and implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 881–892, 2002.
- T.-n. Yang, C.-j. Lee, and S.-j. Yen, “Fuzzy objective functions for robust pattern recognition,” in IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), 2009, pp. 2057–2062.
- E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2765–2781, 2013.
- R. Vidal and P. Favaro, “Low rank subspace clustering (lrsc),” Pattern Recognit. Lett., vol. 43, pp. 47–61, 2014.
- P. Ji, M. Salzmann, and H. Li, “Efficient dense subspace clustering,” in IEEE Winter Conf. Appl. Comput. Vis. (WACV), 2014, pp. 461–468.
- Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, and Q. Yan, “Graph convolutional subspace clustering: A robust subspace clustering framework for hyperspectral image,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 5, pp. 4191–4202, 2021.
- N. Huang, L. Xiao, and Y. Xu, “Bipartite graph partition based coclustering with joint sparsity for hyperspectral images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 12, pp. 4698–4711, 2019.
- M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, “Entropy rate superpixel segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 2011, pp. 2097–2104.
- R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic superpixels compared to state-of-the-art superpixel methods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, 2012.
- H. Zhai, H. Zhang, P. Li, and L. Zhang, “Hyperspectral image clustering: Current achievements and future lines,” IEEE Geosci. Remote Sens. Mag., vol. 9, no. 4, pp. 35–67, 2021.
- C. Hinojosa, E. Vera, and H. Arguello, “A fast and accurate similarity-constrained subspace clustering algorithm for hyperspectral image,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 10 773–10 783, 2021.
- T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2017.
- P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2018.
- T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2016.
- J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering analysis,” in Proc. 33rd Int. Conf. on Int. Conf. Mach. Learn. (ICML), 2016, p. 478–487.
- Z. Peng, H. Liu, Y. Jia, and J. Hou, “Deep attention-guided graph clustering with dual self-supervision,” IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 7, pp. 3296–3307, 2023.
- T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in Proc. 33rd Int. Conf. on Int. Conf. Mach. Learn. (ICML), 2020, p. 1597–1607.
- K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020, pp. 9726–9735.
- J. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. Á. Pires, Z. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent - A new approach to self-supervised learning,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2020.
- Y. Li, P. Hu, Z. Liu, D. Peng, J. T. Zhou, and X. Peng, “Contrastive clustering,” in Proc. AAAI Conf. Artif. Intell. (AAAI), 2021, pp. 8547–8555.
- Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction and classification of hyperspectral images based on convolutional neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232–6251, 2016.
- Y. Li, H. Zhang, and Q. Shen, “Spectral–spatial classification of hyperspectral imagery with 3d convolutional neural network,” Remote Sens., vol. 9, no. 1, 2017.
- M. Kanthi, T. H. Sarma, and C. S. Bindu, “A 3d-deep cnn based feature extraction and hyperspectral image classification,” in IEEE India Geosci. Remote Sens. Symp. (InGARSS), 2020, pp. 229–232.
- S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “Hybridsn: Exploring 3-d–2-d cnn feature hierarchy for hyperspectral image classification,” IEEE Geosci. Remote. Sens. Lett., vol. 17, no. 2, pp. 277–281, 2020.
- Y. Cai, Y. Liu, Z. Zhang, Z. Cai, and X. Liu, “Large-scale hyperspectral image clustering using contrastive learning,” in Proc. ACM Int. Conf. Inf. Knowl. Manag. (CIKM), vol. 3052, 2021.
- X. Chen and K. He, “Exploring simple siamese representation learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021, pp. 15 750–15 758.
- Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive learning with augmentations,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2020.
- Y. You, T. Chen, Y. Shen, and Z. Wang, “Graph contrastive learning automated,” in Proc. Int. Conf. Mach. Learn. (ICML), vol. 139, 2021, pp. 12 121–12 132.
- L. Wu, H. Lin, C. Tan, Z. Gao, and S. Z. Li, “Self-supervised learning on graphs: Contrastive, generative, or predictive,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 4216–4235, 2023.
- J. Zhou, C. Xie, Z. Wen, X. Zhao, and Q. Xuan, “Data augmentation on graphs: A technical survey,” arXiv:2212.09970, 2022.
- P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep graph infomax,” in Proc. Int. Conf. Learn. Represent., 2019.
- Z. Cao, X. Li, Y. Feng, S. Chen, C. Xia, and L. Zhao, “Contrastnet: Unsupervised feature learning by autoencoder and prototypical contrastive learning for hyperspectral imagery classification,” Neurocomputing, vol. 460, pp. 71–83, 2021.
- D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2014.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2017, pp. 5998–6008.
- X. Yang, Y. Liu, S. Zhou, S. Wang, W. Tu, Q. Zheng, X. Liu, L. Fang, and E. Zhu, “Cluster-guided contrastive graph clustering network,” in Proc. AAAI Conf. Artif. Intell. (AAAI), 2023, pp. 10 834–10 842.
- Z. Huang, J. Chen, J. Zhang, and H. Shan, “Learning representation for clustering via prototype scattering and positive sampling,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6, pp. 7509–7524, 2023.
- X. Peng, H. Tang, L. Zhang, Z. Yi, and S. Xiao, “A unified framework for representation-based subspace clustering of out-of-sample and large-scale data,” IEEE Trans. Neural Networks Learn. Syst., vol. 27, no. 12, pp. 2499–2512, 2016.
- S. Matsushima and M. Brbic, “Selective sampling-based scalable sparse subspace clustering,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2019, pp. 12 416–12 425.
- J. Jiang, J. Ma, C. Chen, Z. Wang, Z. Cai, and L. Wang, “Superpca: A superpixelwise pca approach for unsupervised feature extraction of hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8, pp. 4581–4593, 2018.
- S. Liu and H. Wang, “Graph convolutional optimal transport for hyperspectral image spectral clustering,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–13, 2022.
- H. W. Kuhn, “The hungarian method for the assignment problem,” Nav. Res. Logist., vol. 2, no. 1-2, pp. 83–97, 1955.
- L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.