Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrastive Multi-view Subspace Clustering of Hyperspectral Images based on Graph Convolutional Networks (2312.06068v1)

Published 11 Dec 2023 in cs.CV and cs.AI

Abstract: High-dimensional and complex spectral structures make the clustering of hyperspectral images (HSI) a challenging task. Subspace clustering is an effective approach for addressing this problem. However, current subspace clustering algorithms are primarily designed for a single view and do not fully exploit the spatial or textural feature information in HSI. In this study, contrastive multi-view subspace clustering of HSI was proposed based on graph convolutional networks. Pixel neighbor textural and spatial-spectral information were sent to construct two graph convolutional subspaces to learn their affinity matrices. To maximize the interaction between different views, a contrastive learning algorithm was introduced to promote the consistency of positive samples and assist the model in extracting robust features. An attention-based fusion module was used to adaptively integrate these affinity matrices, constructing a more discriminative affinity matrix. The model was evaluated using four popular HSI datasets: Indian Pines, Pavia University, Houston, and Xu Zhou. It achieved overall accuracies of 97.61%, 96.69%, 87.21%, and 97.65%, respectively, and significantly outperformed state-of-the-art clustering methods. In conclusion, the proposed model effectively improves the clustering accuracy of HSI.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. G. Camps-Valls, D. Tuia, L. Bruzzone, and J. A. Benediktsson, “Advances in hyperspectral image classification: Earth monitoring with statistical learning methods,” IEEE signal processing magazine, vol. 31, no. 1, pp. 45–54, 2013.
  2. P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, and A. Plaza, “Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art,” IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 4, pp. 37–78, 2017.
  3. M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, “Automated hyperspectral cueing for civilian search and rescue,” Proceedings of the IEEE, vol. 97, no. 6, pp. 1031–1055, 2009.
  4. R. Guan, Z. Li, T. Li, X. Li, J. Yang, and W. Chen, “Classification of heterogeneous mining areas based on rescapsnet and gaofen-5 imagery,” Remote Sensing, vol. 14, no. 13, p. 3216, 2022.
  5. W. Chen, S. Ouyang, J. Yang, X. Li, G. Zhou, and L. Wang, “Jagan: A framework for complex land cover classification using gaofen-5 ahsi images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 1591–1603, 2022.
  6. P. Ghamisi, E. Maggiori, S. Li, R. Souza, Y. Tarablaka, G. Moser, A. De Giorgi, L. Fang, Y. Chen, M. Chi et al., “New frontiers in spectral-spatial hyperspectral image classification: The latest advances based on mathematical morphology, markov random fields, segmentation, sparse representation, and deep learning,” IEEE geoscience and remote sensing magazine, vol. 6, no. 3, pp. 10–43, 2018.
  7. A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, and Y. Y. Tang, “Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 2, pp. 241–245, 2018.
  8. Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Svm-and mrf-based method for accurate classification of hyperspectral images,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 4, pp. 736–740, 2010.
  9. W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural networks for hyperspectral image classification,” Journal of Sensors, vol. 2015, pp. 1–12, 2015.
  10. Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based classification of hyperspectral data,” IEEE Journal of Selected topics in applied earth observations and remote sensing, vol. 7, no. 6, pp. 2094–2107, 2014.
  11. R. Wang, F. Nie, and W. Yu, “Fast spectral clustering with anchor graph for large hyperspectral images,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 11, pp. 2003–2007, 2017.
  12. H. Zhai, H. Zhang, P. Li, and L. Zhang, “Hyperspectral image clustering: Current achievements and future lines,” IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 4, pp. 35–67, 2021.
  13. R. A. Borsoi, T. Imbiriba, J. C. M. Bermudez, C. Richard, J. Chanussot, L. Drumetz, J.-Y. Tourneret, A. Zare, and C. Jutten, “Spectral variability in hyperspectral data unmixing: A comprehensive review,” IEEE geoscience and remote sensing magazine, vol. 9, no. 4, pp. 223–270, 2021.
  14. J. Chang, G. Meng, L. Wang, S. Xiang, and C. Pan, “Deep self-evolution clustering,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 4, pp. 809–823, 2018.
  15. T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and implementation,” IEEE transactions on pattern analysis and machine intelligence, vol. 24, no. 7, pp. 881–892, 2002.
  16. S. Ghaffarian and S. Ghaffarian, “Automatic histogram-based fuzzy c-means clustering for remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 97, pp. 46–57, 2014.
  17. D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE Transactions on pattern analysis and machine intelligence, vol. 24, no. 5, pp. 603–619, 2002.
  18. Y. Chen, S. Ma, X. Chen, and P. Ghamisi, “Hyperspectral data clustering based on density analysis ensemble,” Remote sensing letters, vol. 8, no. 2, pp. 194–203, 2017.
  19. R. Vidal, “Subspace clustering,” IEEE Signal Processing Magazine, vol. 28, no. 2, pp. 52–68, 2011.
  20. E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and applications,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.
  21. D. Hong, N. Yokoya, J. Chanussot, J. Xu, and X. X. Zhu, “Joint and progressive subspace analysis (jpsa) with spatial–spectral manifold alignment for semisupervised hyperspectral dimensionality reduction,” IEEE Transactions on Cybernetics, vol. 51, no. 7, pp. 3602–3615, 2020.
  22. Q. Li, W. Liu, and L. Li, “Affinity learning via a diffusion process for subspace clustering,” Pattern Recognition, vol. 84, pp. 39–50, 2018.
  23. R. Vidal and P. Favaro, “Low rank subspace clustering (lrsc),” Pattern Recognition Letters, vol. 43, pp. 47–61, 2014.
  24. H. Zhang, H. Zhai, L. Zhang, and P. Li, “Spectral–spatial sparse subspace clustering for hyperspectral remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 6, pp. 3672–3684, 2016.
  25. H. Zhai, H. Zhang, L. Zhang, P. Li, and A. Plaza, “A new sparse subspace clustering algorithm for hyperspectral remote sensing imagery,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 1, pp. 43–47, 2016.
  26. S. Huang, H. Zhang, and A. Pižurica, “Semisupervised sparse subspace clustering method with a joint sparsity constraint for hyperspectral remote sensing images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 3, pp. 989–999, 2019.
  27. M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsupervised learning of visual features,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 132–149.
  28. Z. Peng, H. Liu, Y. Jia, and J. Hou, “Adaptive attribute and structure subspace clustering network,” IEEE Transactions on Image Processing, vol. 31, pp. 3430–3439, 2022.
  29. J. Lei, X. Li, B. Peng, L. Fang, N. Ling, and Q. Huang, “Deep spatial-spectral subspace clustering for hyperspectral image,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 7, pp. 2686–2697, 2020.
  30. K. Li, Y. Qin, Q. Ling, Y. Wang, Z. Lin, and W. An, “Self-supervised deep subspace clustering for hyperspectral images with adaptive self-expressive coefficient matrix initialization,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 3215–3227, 2021.
  31. Y. Cai, M. Zeng, Z. Cai, X. Liu, and Z. Zhang, “Graph regularized residual subspace clustering network for hyperspectral image clustering,” Information Sciences, vol. 578, pp. 85–101, 2021.
  32. Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, and Q. Yan, “Graph convolutional subspace clustering: A robust subspace clustering framework for hyperspectral image,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, pp. 4191–4202, 2020.
  33. Z. Zhang, Y. Cai, W. Gong, P. Ghamisi, X. Liu, and R. Gloaguen, “Hypergraph convolutional subspace clustering with multihop aggregation for hyperspectral image,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 676–686, 2021.
  34. S. Huang, H. Zhang, and A. Pižurica, “Hybrid-hypergraph regularized multiview subspace clustering for hyperspectral images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2021.
  35. C. Hinojosa, F. Rojas, S. Castillo, and H. Arguello, “Hyperspectral image segmentation using 3d regularized subspace clustering model,” Journal of Applied Remote Sensing, vol. 15, no. 1, pp. 016 508–016 508, 2021.
  36. J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification of hyperspectral data from urban areas based on extended morphological profiles,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, pp. 480–491, 2005.
  37. W. Li, C. Chen, H. Su, and Q. Du, “Local binary patterns and extreme learning machine for hyperspectral imagery classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 7, pp. 3681–3693, 2015.
  38. S. Jia, L. Shen, J. Zhu, and Q. Li, “A 3-d gabor phase-based coding and matching framework for hyperspectral imagery classification,” IEEE transactions on cybernetics, vol. 48, no. 4, pp. 1176–1188, 2017.
  39. L. Tian, Q. Du, I. Kopriva, and N. Younan, “Spatial-spectral based multi-view low-rank sparse sbuspace clustering for hyperspectral imagery,” in IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2018, pp. 8488–8491.
  40. Z. Chen, C. Zhang, T. Mu, and Y. He, “Tensorial multiview subspace clustering for polarimetric hyperspectral images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
  41. H. Lu, H. Su, J. Hu, and Q. Du, “Dynamic ensemble learning with multi-view kernel collaborative subspace clustering for hyperspectral image classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 2681–2695, 2022.
  42. Y. Cai, Z. Zhang, P. Ghamisi, Y. Ding, X. Liu, Z. Cai, and R. Gloaguen, “Superpixel contracted neighborhood contrastive subspace clustering network for hyperspectral images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
  43. Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph contrastive learning with adaptive augmentation,” in Proceedings of the Web Conference 2021, 2021, pp. 2069–2080.
  44. Y. Xie, W. Zhang, Y. Qu, L. Dai, and D. Tao, “Hyper-laplacian regularized multilinear multiview self-representations for clustering and semisupervised learning,” IEEE Transactions on Cybernetics, vol. 50, no. 2, pp. 572–586, 2020.
  45. Y. Xie, D. Tao, W. Zhang, Y. Liu, L. Zhang, and Y. Qu, “On unifying multi-view self-representations for clustering by tensor multi-rank minimization,” International Journal of Computer Vision, vol. 126, pp. 1157–1179, 2018.
  46. Y. Wang, L. Wu, X. Lin, and J. Gao, “Multiview spectral clustering via structured low-rank matrix factorization,” IEEE transactions on neural networks and learning systems, vol. 29, no. 10, pp. 4833–4843, 2018.
  47. C. Lu, S. Yan, and Z. Lin, “Convex sparse spectral clustering: Single-view to multi-view,” IEEE Transactions on Image Processing, vol. 25, no. 6, pp. 2833–2843, 2016.
  48. L. Zhang, L. Zhang, B. Du, J. You, and D. Tao, “Hyperspectral image unsupervised classification by robust manifold matrix factorization,” Information Sciences, vol. 485, pp. 154–169, 2019.
  49. S. Liu and H. Wang, “Graph convolutional optimal transport for hyperspectral image spectral clustering,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
  50. R. Liu, “Understand and improve contrastive learning methods for visual representation: A review,” arXiv preprint arXiv:2106.03259, 2021.
  51. W. Van Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and L. Van Gool, “Scan: Learning to classify images without labels,” in European conference on computer vision.   Springer, 2020, pp. 268–285.
  52. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning.   PMLR, 2020, pp. 1597–1607.
  53. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 9729–9738.
  54. S. Hou, H. Shi, X. Cao, X. Zhang, and L. Jiao, “Hyperspectral imagery classification based on contrastive learning,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2021.
  55. J.-X. Wang, T. Li, S.-B. Chen, J. Tang, B. Luo, and R. C. Wilson, “Reliable contrastive learning for semi-supervised change detection in remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
  56. H. Li, Y. Li, G. Zhang, R. Liu, H. Huang, Q. Zhu, and C. Tao, “Global and local contrastive self-supervised learning for semantic segmentation of hr remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
  57. M. Wang, F. Gao, J. Dong, H.-C. Li, and Q. Du, “Nearest neighbor-based contrastive learning for hyperspectral and lidar data classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–16, 2023.
  58. C. Rodarmel and J. Shan, “Principal component analysis for hyperspectral image classification,” Surveying and Land Information Science, vol. 62, no. 2, pp. 115–122, 2002.
  59. M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, “Advances in spectral-spatial classification of hyperspectral images,” Proceedings of the IEEE, vol. 101, no. 3, pp. 652–675, 2012.
Citations (25)

Summary

We haven't generated a summary for this paper yet.