Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-Preserving Collaborative Split Learning Framework for Smart Grid Load Forecasting (2403.01438v2)

Published 3 Mar 2024 in cs.LG

Abstract: Accurate load forecasting is crucial for energy management, infrastructure planning, and demand-supply balancing. Smart meter data availability has led to the demand for sensor-based load forecasting. Conventional ML allows training a single global model using data from multiple smart meters requiring data transfer to a central server, raising concerns for network requirements, privacy, and security. We propose a split learning-based framework for load forecasting to alleviate this issue. We split a deep neural network model into two parts, one for each Grid Station (GS) responsible for an entire neighbourhood's smart meters and the other for the Service Provider (SP). Instead of sharing their data, client smart meters use their respective GSs' model split for forward pass and only share their activations with the GS. Under this framework, each GS is responsible for training a personalized model split for their respective neighbourhoods, whereas the SP can train a single global or personalized model for each GS. Experiments show that the proposed models match or exceed a centrally trained model's performance and generalize well. Privacy is analyzed by assessing information leakage between data and shared activations of the GS model split. Additionally, differential privacy enhances local data privacy while examining its impact on performance. A transformer model is used as our base learner.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. G. Notton and C. Voyant, “Forecasting of intermittent solar energy resource,” in Advances in Renewable Energies and Power Technologies.   Elsevier, 2018, pp. 77–114.
  2. A. Arif, N. Javaid, M. Anwar, A. Naeem, H. Gul, and S. Fareed, “Electricity load and price forecasting using machine learning algorithms in smart grid: A survey,” in Workshops of the International Conference on Advanced Information Networking and Applications.   Springer, 2020, pp. 471–483.
  3. N. Truonga, K. Suna, S. Wanga, F. Guittona, and Y. Guoa, “Privacy preservation in federated learning: Insights from the gdpr perspective,” 2020. [Online]. Available: https://arxiv.org/abs/2011.05411
  4. A. Reinhardt, D. Burkhardt, M. Zaheer, and R. Steinmetz, “Electric appliance classification based on distributed high resolution current sensing,” in 37th Annual IEEE Conference on Local Computer Networks-Workshops.   IEEE, 2012, pp. 999–1005.
  5. C. J. Hoofnagle, B. Van Der Sloot, and F. Z. Borgesius, “The european union general data protection regulation: what it is and what it means,” Information & Communications Technology Law, vol. 28, no. 1, pp. 65–98, 2019.
  6. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan et al., “Towards federated learning at scale: System design,” Proceedings of Machine Learning and Systems, vol. 1, pp. 374–388, 2019.
  7. P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning for health: Distributed deep learning without sharing raw patient data,” arXiv preprint arXiv:1812.00564, 2018.
  8. L. Sehovac and K. Grolinger, “Deep learning for load forecasting: Sequence to sequence recurrent neural networks with attention,” IEEE Access, vol. 8, pp. 36 411–36 426, 2020.
  9. Y. Tian, L. Sehovac, and K. Grolinger, “Similarity-based chained transfer learning for energy forecasting with big data,” IEEE Access, vol. 7, pp. 139 895–139 908, 2019.
  10. M. N. Fekri, H. Patel, K. Grolinger, and V. Sharma, “Deep learning for load forecasting with smart meter data: Online adaptive recurrent neural network,” Applied Energy, vol. 282, p. 116177, 2021.
  11. S. Ryu and Y. Yu, “Quantile-mixer: A novel deep learning approach for probabilistic short-term load forecasting,” IEEE Transactions on Smart Grid, pp. 1–1, 2023.
  12. Y. Rao, W. Zhao, Z. Zhu, J. Lu, and J. Zhou, “Global filter networks for image classification,” Advances in Neural Information Processing Systems, vol. 34, pp. 980–993, 2021.
  13. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  14. H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting,” Advances in Neural Information Processing Systems, vol. 34, pp. 22 419–22 430, 2021.
  15. H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, Conference Proceedings, pp. 11 106–11 115.
  16. T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting,” in International Conference on Machine Learning.   PMLR, Conference Proceedings, pp. 27 268–27 286.
  17. S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting,” Advances in neural information processing systems, vol. 32, 2019.
  18. I. Yazici, O. F. Beyca, and D. Delen, “Deep-learning-based short-term electricity load forecasting: A real case application,” Engineering Applications of Artificial Intelligence, vol. 109, p. 104645, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0952197621004516
  19. A. Taïk and S. Cherkaoui, “Electrical load forecasting using edge computing and federated learning,” in ICC 2020-2020 IEEE International Conference on Communications (ICC).   IEEE, 2020, Conference Proceedings, pp. 1–6.
  20. J. Li, Y. Ren, S. Fang, K. Li, and M. Sun, “Federated learning-based ultra-short term load forecasting in power internet of things,” in 2020 IEEE International Conference on Energy Internet (ICEI).   IEEE, 2020, Conference Proceedings, pp. 63–68.
  21. H. Liu, X. Zhang, X. Shen, and H. Sun, “A federated learning framework for smart grids: Securing power traces in collaborative learning,” arXiv preprint arXiv:2103.11870, 2021.
  22. M. N. Fekri, K. Grolinger, and S. Mir, “Distributed load forecasting using smart meter data: Federated learning with recurrent neural networks,” International Journal of Electrical Power & Energy Systems, vol. 137, p. 107669, 2022.
  23. Y. Yang, Z. Wang, S. Zhao, and J. Wu, “An integrated federated learning algorithm for short-term load forecasting,” Electric Power Systems Research, vol. 214, p. 108830, 2023.
  24. Y. Liu, Z. Dong, B. Liu, Y. Xu, and Z. Ding, “Fedforecast: A federated learning framework for short-term probabilistic individual load forecasting in smart grid,” International Journal of Electrical Power & Energy Systems, vol. 152, p. 109172, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061523002296
  25. M. A. Husnoo, A. Anwar, N. Hosseinzadeh, S. N. Islam, A. N. Mahmood, and R. Doss, “A secure federated learning framework for residential short term load forecasting,” IEEE Transactions on Smart Grid, pp. 1–1, 2023.
  26. H. Liu, X. Zhang, H. Sun, and M. Shahidehpour, “Boosted multi-task learning for inter-district collaborative load forecasting,” IEEE Transactions on Smart Grid, pp. 1–1, 2023.
  27. Y. Sakuma and H. Nishi, “Hierarchical multiobjective distributed deep learning for residential short-term electric load forecasting,” IEEE Access, vol. 10, pp. 69 950–69 962, 2022.
  28. S. Abuadbba, K. Kim, M. Kim, C. Thapa, S. A. Camtepe, Y. Gao, H. Kim, and S. Nepal, “Can we use split learning on 1d cnn models for privacy preserving training?” in Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, 2020, Conference Proceedings, pp. 305–318.
  29. C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014.
  30. L. Jiang, Y. Wang, W. Zheng, C. Jin, Z. Li, and S. G. Teo, “Lstmsplit: Effective split learning based lstm on sequential time-series data,” arXiv preprint arXiv:2203.04305, 2022.
  31. M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A. Courville, and R. D. Hjelm, “Mine: mutual information neural estimation,” arXiv preprint arXiv:1801.04062, 2018.
  32. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, Conference Proceedings, pp. 308–318.
  33. E. Erdogan, A. Kupcu, and A. E. Cicek, “Splitguard: Detecting and mitigating training-hijacking attacks in split learning,” arXiv preprint arXiv:2108.09052, 2021.
  34. A. Paverd, A. Martin, and I. Brown, “Modelling and automatically analysing privacy properties for honest-but-curious adversaries,” Tech. Rep, 2014.
  35. Z. Ji, Z. C. Lipton, and C. Elkan, “Differential privacy and machine learning: a survey and review,” arXiv preprint arXiv:1412.7584, 2014.
  36. A. De, “Lower bounds in differential privacy,” in Theory of Cryptography: 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings 9.   Springer, 2012, pp. 321–338.
  37. D. Pasquini, G. Ateniese, and M. Bernaschi, “Unleashing the tiger: Inference attacks on split learning,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, Conference Proceedings, pp. 2113–2129.
  38. M. D. Donsker and S. S. Varadhan, “Asymptotic evaluation of certain markov process expectations for large time. iv,” Communications on Pure and Applied Mathematics, vol. 36, no. 2, pp. 183–212, 1983.
  39. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, and L. Antiga, “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019.
  40. N. Holohan, S. Braghin, P. Mac Aonghusa, and K. Levacher, “Diffprivlib: the ibm differential privacy library,” arXiv preprint arXiv:1907.02444, 2019.
  41. “Implementation code of split load forecasting for smart grid,” 2022. [Online]. Available: https://github.com/AsifIqbal8739/SplitLoadForecasting
  42. Y. Liu, X. Zhu, J. Wang, and J. Xiao, “A quantitative metric for privacy leakage in federated learning,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2021, Conference Proceedings, pp. 3065–3069.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Asif Iqbal (15 papers)
  2. Prosanta Gope (18 papers)
  3. Biplab Sikdar (24 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.