Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Reclaiming the Lost Conformality in a non-Hermitian Quantum 5-state Potts Model (2403.00852v2)

Published 29 Feb 2024 in cond-mat.stat-mech, cond-mat.str-el, and hep-th

Abstract: Conformal symmetry, emerging at critical points, can be lost when renormalization group fixed points collide. Recently, it was proposed that after collisions, real fixed points transition into the complex plane, becoming complex fixed points described by complex conformal field theories (CFTs). Although this idea is compelling, directly demonstrating such complex conformal fixed points in microscopic models remains highly demanding. Furthermore, these concrete models are instrumental in unraveling the mysteries of complex CFTs and illuminating a variety of intriguing physical problems, including weakly first-order transitions in statistical mechanics and the conformal window of gauge theories. In this work, we have successfully addressed this complex challenge for the (1+1)-dimensional quantum $5$-state Potts model, whose phase transition has long been known to be weakly first-order. By adding an additional non-Hermitian interaction, we successfully identify two conjugate critical points located in the complex parameter space, where the lost conformality is restored in a complex manner. Specifically, we unambiguously demonstrate the radial quantization of the complex CFTs and compute the operator spectrum, as well as new operator product expansion coefficients that were previously unknown.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. David B. Kaplan, Jong-Wan Lee, Dam T. Son,  and Mikhail A. Stephanov, “Conformality lost,” Phys. Rev. D 80, 125005 (2009).
  2. Chong Wang, Adam Nahum, Max A. Metlitski, Cenke Xu,  and T. Senthil, “Deconfined quantum critical points: Symmetries and dualities,” Phys. Rev. X 7, 031051 (2017).
  3. Victor Gorbenko, Slava Rychkov,  and Bernardo Zan, “Walking, weak first-order transitions, and complex cfts,” Journal of High Energy Physics 2018 (2018a), 10.1007/jhep10(2018)108.
  4. Victor Gorbenko, Slava Rychkov,  and Bernardo Zan, “Walking, Weak first-order transitions, and Complex CFTs II. Two-dimensional Potts model at Q>4𝑄4Q>4italic_Q > 4,” SciPost Phys. 5, 050 (2018b).
  5. T. D. Lee and C. N. Yang, “Statistical theory of equations of state and phase transitions. ii. lattice gas and ising model,” Phys. Rev. 87, 410–419 (1952).
  6. John L. Cardy, “Conformal invariance and the yang-lee edge singularity in two dimensions,” Phys. Rev. Lett. 54, 1354–1356 (1985a).
  7. T. Senthil, Ashvin Vishwanath, Leon Balents, Subir Sachdev,  and Matthew P. A. Fisher, “Deconfined quantum critical points,” Science 303, 1490–1494 (2004a).
  8. T. Senthil, Leon Balents, Subir Sachdev, Ashvin Vishwanath,  and Matthew P. A. Fisher, “Quantum criticality beyond the landau-ginzburg-wilson paradigm,” Phys. Rev. B 70, 144407 (2004b).
  9. Pablo Serna and Adam Nahum, “Emergence and spontaneous breaking of approximate O⁢(4)O4\mathrm{O}(4)roman_O ( 4 ) symmetry at a weakly first-order deconfined phase transition,” Phys. Rev. B 99, 195110 (2019).
  10. Ruochen Ma and Chong Wang, “Theory of deconfined pseudocriticality,” Phys. Rev. B 102, 020407 (2020).
  11. Adam Nahum, “Fixed point annihilation for a spin in a fluctuating field,” Phys. Rev. B 106, L081109 (2022).
  12. Zheng Zhou, Liangdong Hu, W Zhu,  and Yin-Chen He, “The so(5) deconfined phase transition under the fuzzy sphere microscope: Approximate conformal symmetry, pseudo-criticality, and operator spectrum,” arXiv preprint arXiv:2306.16435  (2023).
  13. Francesco Benini, Cristoforo Iossa,  and Marco Serone, “Conformality loss, walking, and 4d complex conformal field theories at weak coupling,” Phys. Rev. Lett. 124, 051602 (2020).
  14. Oleg Antipin, Jahmall Bersini, Francesco Sannino, Zhi-Wei Wang,  and Chen Zhang, “Charging the walking u (n) u(n) higgs theory as a complex cft,” arXiv preprint arXiv:2006.10078  (2020).
  15. Max Uetrecht, Igor F. Herbut, Emmanuel Stamou,  and Michael M. Scherer, “Absence of so(4) quantum criticality in dirac semimetals at two-loop order,” Phys. Rev. B 108, 245130 (2023).
  16. Han Ma and Yin-Chen He, “Shadow of complex fixed point: Approximate conformality of q>4𝑞4q>4italic_q > 4 potts model,” Phys. Rev. B 99, 195130 (2019).
  17. Brenden Roberts, Shenghan Jiang,  and Olexei I. Motrunich, “One-dimensional model for deconfined criticality with z3×z3subscript𝑧3subscript𝑧3z_{3}\times{}z_{3}italic_z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT × italic_z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT symmetry,” Phys. Rev. B 103, 155143 (2021).
  18. Antón F. Faedo, Carlos Hoyos, David Mateos,  and Javier G. Subils, “Holographic complex conformal field theories,” Phys. Rev. Lett. 124, 161601 (2020).
  19. Dario Benedetti, “Instability of complex cfts with operators in the principal series,” Journal of High Energy Physics 2021 (2021), 10.1007/jhep05(2021)004.
  20. Simone Giombi, Richard Huang, Igor R. Klebanov, Silviu S. Pufu,  and Grigory Tarnopolsky, “o⁢(n)𝑜𝑛o(n)italic_o ( italic_n ) model in 4<d<64𝑑64<d<64 < italic_d < 6: Instantons and complex cfts,” Phys. Rev. D 101, 045013 (2020).
  21. SangEun Han, Daniel J. Schultz,  and Yong Baek Kim, “Complex fixed points of the non-hermitian kondo model in a luttinger liquid,” Phys. Rev. B 107, 235153 (2023).
  22. Arijit Haldar, Omid Tavakol, Han Ma,  and Thomas Scaffidi, “Hidden critical points in the two-dimensional model: Exact numerical study of a complex conformal field theory,” Physical Review Letters 131 (2023), 10.1103/physrevlett.131.131601.
  23. Kay Joerg Wiese and Jesper Lykke Jacobsen, “The two upper critical dimensions of the ising and potts models,” arXiv preprint arXiv:2311.01529  (2023).
  24. Rodney J Baxter, “Potts model at the critical temperature,” Journal of Physics C: Solid State Physics 6, L445 (1973).
  25. B. Nienhuis, A. N. Berker, Eberhard K. Riedel,  and M. Schick, “First- and second-order phase transitions in potts models: Renormalization-group solution,” Phys. Rev. Lett. 43, 737–740 (1979).
  26. John L. Cardy, M. Nauenberg,  and D. J. Scalapino, “Scaling theory of the potts-model multicritical point,” Phys. Rev. B 22, 2560–2568 (1980).
  27. M. Nauenberg and D. J. Scalapino, “Singularities and scaling functions at the potts-model multicritical point,” Phys. Rev. Lett. 44, 837–840 (1980).
  28. B. Nienhuis, E. K. Riedel,  and M. Schick, “q𝑞qitalic_q-state potts model in general dimension,” Phys. Rev. B 23, 6055–6060 (1981).
  29. F. Y. Wu, “The potts model,” Rev. Mod. Phys. 54, 235–268 (1982).
  30. E Buddenoir and S Wallon, “The correlation length of the potts model at the first-order transition point,” Journal of Physics A: Mathematical and General 26, 3045 (1993).
  31. J L Cardy, “Conformal invariance and universality in finite-size scaling,” Journal of Physics A: Mathematical and General 17, L385–L387 (1984).
  32. H. W. J. Blöte, John L. Cardy,  and M. P. Nightingale, “Conformal invariance, the central charge, and universal finite-size amplitudes at criticality,” Phys. Rev. Lett. 56, 742–745 (1986).
  33. J L Cardy, “Universal amplitudes in finite-size scaling: generalisation to arbitrary dimensionality,” Journal of Physics A: Mathematical and General 18, L757–L760 (1985b).
  34. John L. Cardy, “Operator content of two-dimensional conformally invariant theories,” Nuclear Physics B 270, 186–204 (1986).
  35. Ian Affleck, “Universal term in the free energy at a critical point and the conformal anomaly,” in Current Physics–Sources and Comments, Vol. 2 (Elsevier, 1988) pp. 347–349.
  36. W. Zhu, Chao Han, Emilie Huffman, Johannes S. Hofmann,  and Yin-Chen He, “Uncovering conformal symmetry in the 3d ising transition: State-operator correspondence from a quantum fuzzy sphere regularization,” Phys. Rev. X 13, 021009 (2023).
  37. Vl.S. Dotsenko, “Critical behaviour and associated conformal algebra of the z3 potts model,” Nuclear Physics B 235, 54–74 (1984).
  38. Vl.S. Dotsenko and V.A. Fateev, “Conformal algebra and multipoint correlation functions in 2d statistical models,” Nuclear Physics B 240, 312–348 (1984).
  39. AB Zamolodchikov and VA Fateev, ‘‘Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in z,-symmetric statistical systems,” Zh. Eksp. Teor. Fiz 89, 399 (1985).
  40. Aleksandr Borisovich Zamolodchikov and Vladimir Aleksandrovich Fateev, “Representations of the algebra of parafermion currents of spin 4/3 in two-dimensional conformal field theory. minimal models and the tricritical potts z(3) model,” Theor. Math. Phys. (United States) 71 (1987).
  41. Robbert Dijkgraaf, Cumrun Vafa, Erik Verlinde,  and Herman Verlinde, “The operator algebra of orbifold models,” Communications in Mathematical Physics 123, 485–526 (1989).
  42. Shumpei Iino, Satoshi Morita, Naoki Kawashima,  and Anders W. Sandvik, “Detecting signals of weakly first-order phase transitions in two-dimensional potts models,” Journal of the Physical Society of Japan 88, 034006 (2019).
  43. Edward O’Brien and Paul Fendley, “Lattice supersymmetry and order-disorder coexistence in the tricritical ising model,” Phys. Rev. Lett. 120, 206403 (2018).
  44. Edward O’Brien and Paul Fendley, “Self-dual S3subscript𝑆3S_{3}italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT-invariant quantum chains,” SciPost Phys. 9, 088 (2020).
  45. Bing-Xin Lao and Slava Rychkov, “3d ising cft and exact diagonalization on icosahedron: The power of conformal perturbation theory,” SciPost Physics 15 (2023), 10.21468/scipostphys.15.6.243.
  46. Supplementary material .
  47. Ashley Milsted and Guifre Vidal, “Extraction of conformal data in critical quantum spin chains using the Koo-Saleur formula,” Phys. Rev. B 96, 245105 (2017), arXiv:1706.01436 [cond-mat.str-el] .
  48. Yijian Zou, Ashley Milsted,  and Guifre Vidal, “Conformal data and renormalization group flow in critical quantum spin chains using periodic uniform matrix product states,” Phys. Rev. Lett. 121, 230402 (2018).
  49. Yijian Zou and Guifre Vidal, “Emergence of conformal symmetry in quantum spin chains: Antiperiodic boundary conditions and supersymmetry,” Phys. Rev. B 101, 045132 (2020).
  50. G von Gehlen, “Critical and off-critical conformal analysis of the ising quantum chain in an imaginary field,” Journal of Physics A: Mathematical and General 24, 5371 (1991).
  51. Claude Itzykson, H Saleur,  and J-B Zuber, “Conformal invariance of nonunitary 2d-models,” Europhysics Letters 2, 91 (1986).
  52. Philippe Di Francesco, Hubert Saleur,  and Jean-Bernard Zuber, “Relations between the coulomb gas picture and conformal invariance of two-dimensional critical models,” Journal of statistical physics 49, 57–79 (1987).
  53. Yijian Zou, Ashley Milsted,  and Guifre Vidal, “Conformal fields and operator product expansion in critical quantum spin chains,” Phys. Rev. Lett. 124, 040604 (2020).
  54. David Poland, Slava Rychkov,  and Alessandro Vichi, “The conformal bootstrap: Theory, numerical techniques, and applications,” Rev. Mod. Phys. 91, 015002 (2019).
  55. Jesper Lykke Jacobsen and Hubert Saleur, “Bootstrap approach to geometrical four-point functions in the two-dimensional critical Q𝑄Qitalic_Q-state Potts model: A study of the s𝑠sitalic_s-channel spectra,” JHEP 01, 084 (2019), arXiv:1809.02191 [math-ph] .
  56. Rongvoram Nivesvivat and Sylvain Ribault, ‘‘Logarithmic CFT at generic central charge: from Liouville theory to the Q𝑄Qitalic_Q-state Potts model,” SciPost Phys. 10, 021 (2021).
  57. Jesper Lykke Jacobsen, Sylvain Ribault,  and Hubert Saleur, “Spaces of states of the two-dimensional O⁢(n)𝑂𝑛O(n)italic_O ( italic_n ) and Potts models,” SciPost Phys. 14, 092 (2023).
  58. Rongvoram Nivesvivat, “Global symmetry and conformal bootstrap in the two-dimensional Q𝑄Qitalic_Q-state Potts model,” SciPost Phys. 14, 155 (2023).
  59. Jesper Lykke Jacobsen and Kay Joerg Wiese, “Lattice realization of complex cfts: Two-dimensional potts model with q>4𝑞4q>4italic_q > 4 states,”  (2024), arXiv:2402.10732 [hep-th] .
  60. P Reinicke, “Finite-size scaling functions and conformal invariance,” Journal of Physics A: Mathematical and General 20, 4501 (1987a).
  61. P Reinicke, “Analytical and non-analytical corrections to finite-size scaling,” Journal of Physics A: Mathematical and General 20, 5325 (1987b).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com