Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 16 tok/s
GPT-5 High 18 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Molecular unfolding formulation with enhanced quantum annealing approach (2403.00507v1)

Published 1 Mar 2024 in quant-ph and cs.ET

Abstract: Molecular docking is a crucial phase in drug discovery, involving the precise determination of the optimal spatial arrangement between two molecules when they bind. The such analysis, the 3D structure of molecules is a fundamental consideration, involving the manipulation of molecular representations based on their degrees of freedom, including rigid roto-translation and fragment rotations along rotatable bonds, to determine the preferred spatial arrangement when molecules bind to each other. In this paper, quantum annealing based solution to solve Molecular unfolding (MU) problem, a specific phase within molecular docking, is explored and compared with a state-of-the-art classical algorithm named "GeoDock". Molecular unfolding focuses on expanding a molecule to an unfolded state to simplify manipulation within the target cavity and optimize its configuration, typically by maximizing molecular area or internal atom distances. Molecular unfolding problem aims to find the torsional configuration that increases the inter-atomic distance within a molecule, which also increases the molecular area. Quantum annealing approach first encodes the problem into a Higher-order Unconstrained Binary Optimization (HUBO) equation which is pruned to an arbitrary percentage to improve the time efficiency and to be able to solve the equation using any quantum annealer. The resultant HUBO is then converted to a Quadratic Unconstrained Binary Optimization equation (QUBO), which is easily embedded on a D-wave annealing Quantum processor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. Y. Cao, J. Romero, and A. Aspuru-Guzik, Potential of quantum computing for drug discovery, IBM Journal of Research and Development 62, 6 (2018).
  2. A. V. Sadybekov and V. Katritch, Computational approaches streamlining drug discovery, Nature 616, 673 (2023).
  3. G. M. Morris and M. Lim-Wilby, Molecular docking, Molecular modeling of proteins , 365 (2008).
  4. A. Pitchai, Quantum computing: Principles and mathematical models, Emerging Computing Paradigms: Principles, Advances and Applications , 41 (2022).
  5. A. K. Bishwas, A. Mani, and V. Palade, An investigation on support vector clustering for big data in quantum paradigm, Quantum Information Processing 19, 108 (2020a).
  6. A. K. Bishwas, A. Mani, and V. Palade, Gaussian kernel in quantum learning, International Journal of Quantum Information 18, 2050006 (2020b).
  7. A. Heifetz, Quantum mechanics in drug discovery (Springer, New York, 2020).
  8. A. K. Bishwas, A. Mani, and V. Palade, 4 from classical to quantum machine learning, Quantum Machine Learning 6, 67 (2020c).
  9. Protein data bank: the single global archive for 3d macromolecular structure data, Nucleic acids research 47, D520 (2019).
  10. J. M. Van Verth and L. M. Bishop, Essential mathematics for games and interactive applications (CRC Press, Boca Raton, 2015).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets