Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Families of Schmidt-number witnesses for high dimensional quantum states (2403.00248v1)

Published 1 Mar 2024 in quant-ph

Abstract: Higher dimensional entangled states demonstrate significant advantages in quantum information processing tasks. Schmidt number is a quantity on the entanglement dimension of a bipartite state. Here we build families of k-positive maps from the symmetric information complete positive operator-valued measurements and mutually unbiased bases, and we also present the Schmidt number witnesses, correspondingly. At last, based on the witnesses obtained from mutually unbiased bases, we show the distance between a bipartite state and the set of states with Schmidt number less than k.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Reviews of modern physics, vol. 81, no. 2, p. 865, 2009.
  2. M. B. Plenio and S. S. Virmani, “An introduction to entanglement theory,” in Quantum Inf. Comput.   Springer, 2014, pp. 173–209.
  3. A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Physical review letters, vol. 67, no. 6, p. 661, 1991.
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Physical review letters, vol. 70, no. 13, p. 1895, 1993.
  5. C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on einstein-podolsky-rosen states,” Physical review letters, vol. 69, no. 20, p. 2881, 1992.
  6. M. Lewenstein, B. Kraus, P. Horodecki, and J. Cirac, “Characterization of separable states and entanglement witnesses,” Physical Review A, vol. 63, no. 4, p. 044304, 2001.
  7. K. Chen and L.-A. Wu, “A matrix realignment method for recognizing entanglement,” Quantum Inf. Comput., no. 3, p. 193, 2003.
  8. O. Rudolph, “Further results on the cross norm criterion for separability,” Quantum Information Processing, vol. 4, no. 3, pp. 219–239, 2005.
  9. O. Gühne, M. Mechler, G. Tóth, and P. Adam, “Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion,” Physical Review A, vol. 74, no. 1, p. 010301, 2006.
  10. C.-J. Zhang, Y.-S. Zhang, S. Zhang, and G.-C. Guo, “Entanglement detection beyond the computable cross-norm or realignment criterion,” Physical Review A, vol. 77, no. 6, p. 060301, 2008.
  11. C. Spengler, M. Huber, S. Brierley, T. Adaktylos, and B. C. Hiesmayr, “Entanglement detection via mutually unbiased bases,” Physical Review A, vol. 86, no. 2, p. 022311, 2012.
  12. S.-Q. Shen, M.-Y. Wang, M. Li, and S.-M. Fei, “Separability criteria based on the realignment of density matrices and reduced density matrices,” Physical Review A, vol. 92, no. 4, p. 042332, 2015.
  13. J. Shang, A. Asadian, H. Zhu, and O. Gühne, “Enhanced entanglement criterion via informationally complete measurements,” Physical Review A, vol. 98, no. 2, p. 022309, 2018.
  14. G. Sarbicki, G. Scala, and D. Chruściński, “Family of multipartite separability criteria based on a correlation tensor,” Physical Review A, vol. 101, no. 1, p. 012341, 2020.
  15. X. Shi and Y. Sun, “A family of separability criteria and lower bounds of concurrence,” Quantum Information Processing, vol. 22, no. 3, p. 131, 2023.
  16. S. Xian, “The entanglement criteria based on equiangular tight frames,” Journal of Physics A: Mathematical and Theoretical, vol. 57, no. 07, p. 075302, 2024.
  17. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Physical Review Letters, vol. 80, no. 10, p. 2245, 1998.
  18. M. Christandl and A. Winter, ““squashed entanglement”: an additive entanglement measure,” Journal of mathematical physics, vol. 45, no. 3, pp. 829–840, 2004.
  19. K. Chen, S. Albeverio, and S.-M. Fei, “Concurrence of arbitrary dimensional bipartite quantum states,” Physical review letters, vol. 95, no. 4, p. 040504, 2005.
  20. J. I. de Vicente, “Lower bounds on concurrence and separability conditions,” Physical Review A, vol. 75, no. 5, p. 052320, 2007.
  21. M. Li, Z. Wang, J. Wang, S. Shen, and S.-m. Fei, “Improved lower bounds of concurrence and convex-roof extended negativity based on bloch representations,” Quantum Information Processing, vol. 19, no. 4, pp. 1–11, 2020.
  22. O. Gühne and G. Tóth, “Entanglement detection,” Physics Reports, vol. 474, no. 1-6, pp. 1–75, 2009.
  23. D. Chruściński and G. Sarbicki, “Entanglement witnesses: construction, analysis and classification,” Journal of Physics A: Mathematical and Theoretical, vol. 47, no. 48, p. 483001, 2014.
  24. D. Chruściński, G. Sarbicki, and F. Wudarski, “Entanglement witnesses from mutually unbiased bases,” Physical Review A, vol. 97, no. 3, p. 032318, 2018.
  25. T. Li, L.-M. Lai, S.-M. Fei, and Z.-X. Wang, “Mutually unbiased measurement based entanglement witnesses,” International Journal of Theoretical Physics, vol. 58, pp. 3973–3985, 2019.
  26. K. Siudzińska and D. Chruściński, “Entanglement witnesses from mutually unbiased measurements,” Scientific Reports, vol. 11, no. 1, p. 22988, 2021.
  27. K. Siudzińska, “Indecomposability of entanglement witnesses constructed from symmetric measurements,” Scientific Reports, vol. 12, no. 1, p. 10785, 2022.
  28. B. M. Terhal and P. Horodecki, “Schmidt number for density matrices,” Physical Review A, vol. 61, no. 4, p. 040301, 2000.
  29. D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenlówe, “High-dimensional quantum communication: benefits, progress, and future challenges,” Advanced Quantum Technologies, vol. 2, no. 12, p. 1900038, 2019.
  30. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little et al., “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature, vol. 546, no. 7660, pp. 622–626, 2017.
  31. Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, “Qudits and high-dimensional quantum computing,” Frontiers in Physics, vol. 8, p. 589504, 2020.
  32. S. Paesani, J. F. Bulmer, A. E. Jones, R. Santagati, and A. Laing, “Scheme for universal high-dimensional quantum computation with linear optics,” Physical Review Letters, vol. 126, no. 23, p. 230504, 2021.
  33. J. Bavaresco, N. Herrera Valencia, C. Klöckl, M. Pivoluska, P. Erker, N. Friis, M. Malik, and M. Huber, “Measurements in two bases are sufficient for certifying high-dimensional entanglement,” Nature Physics, vol. 14, no. 10, pp. 1032–1037, 2018.
  34. N. Wyderka, G. Chesi, H. Kampermann, C. Macchiavello, and D. Bruß, “Construction of efficient schmidt-number witnesses for high-dimensional quantum states,” Physical Review A, vol. 107, no. 2, p. 022431, 2023.
  35. S. Liu, Q. He, M. Huber, O. Gühne, and G. Vitagliano, “Characterizing entanglement dimensionality from randomized measurements,” PRX Quantum, vol. 4, no. 2, p. 020324, 2023.
  36. S. Morelli, M. Huber, and A. Tavakoli, “Resource-efficient high-dimensional entanglement detection via symmetric projections,” Physical Review Letters, vol. 131, no. 17, p. 170201, 2023.
  37. S. Liu, M. Fadel, Q. He, M. Huber, and G. Vitagliano, “Bounding entanglement dimensionality from the covariance matrix,” Quantum, vol. 8, p. 1236, 2024.
  38. A. Tavakoli and S. Morelli, “Enhanced schmidt number criteria based on correlation trace norms,” arXiv preprint arXiv:2402.09972, 2024.
  39. A. Sanpera, D. Bruß, and M. Lewenstein, “Schmidt-number witnesses and bound entanglement,” Physical Review A, vol. 63, no. 5, p. 050301, 2001.
  40. J. Tomiyama, “On the geometry of positive maps in matrix algebras. ii,” Linear algebra and its applications, vol. 69, pp. 169–177, 1985.
  41. P. Horodecki, L. Rudnicki, and K. Zyczkowski, “Five open problems in quantum information theory,” PRX Quantum, vol. 3, no. 1, p. 010101, 2022.
  42. G. Zauner, “Quantum designs,” Ph.D. dissertation, Ph. D. thesis, University of Vienna Vienna, 1999.
  43. A. J. Scott and M. Grassl, “Symmetric informationally complete positive-operator-valued measures: A new computer study,” Journal of Mathematical Physics, vol. 51, no. 4, 2010.
  44. A. J. Scott, “Sics: Extending the list of solutions,” arXiv preprint arXiv:1703.03993, 2017.
  45. A. E. Rastegin, “Notes on general sic-povms,” Physica Scripta, vol. 89, no. 8, p. 085101, 2014.
  46. S. Wu, S. Yu, K. Mólmer et al., “Entropic uncertainty relation for mutually unbiased bases,” Physical Review A, vol. 79, no. 2, p. 022104, 2009.
  47. S. Xian, “Lower bounds of entanglement quantifiers based on entanglement witnesses,” arXiv preprint arXiv:2312.17620, 2024.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com