Broken detailed balance and entropy production in directed networks (2402.19157v5)
Abstract: The structure of a complex network plays a crucial role in determining its dynamical properties. In this work, we show that the the degree to which a network is directed and hierarchically organised is closely associated with the degree to which its dynamics break detailed balance and produce entropy. We consider a range of dynamical processes and show how different directed network features affect their entropy production rate. We begin with an analytical treatment of a 2-node network followed by numerical simulations of synthetic networks using the preferential attachment and Erd\"os-Renyi algorithms. Next, we analyse a collection of 97 empirical networks to determine the effect of complex real-world topologies. Finally, we present a simple method for inferring broken detailed balance and directed network structure from multivariate time-series and apply our method to identify non-equilibrium dynamics and hierarchical organisation in both human neuroimaging and financial time-series. Overall, our results shed light on the consequences of directed network structure on non-equilibrium dynamics and highlight the importance and ubiquity of hierarchical organisation and non-equilibrium dynamics in real-world systems.
- J. A. Dunne, R. J. Williams, and N. D. Martinez, Food-web structure and network theory: The role of connectance and size, Proceedings of the National Academy of Sciences of the United States of America 99, 12917 (2002).
- M. O. Jackson, Social and Economic Networks (Princeton University Press, 2010).
- S. Wasserman, Social Network Analysis (Cambridge University Press, 1994).
- E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nature Reviews Neuroscience 10, 186 (2009).
- D. S. Bassett and O. Sporns, Network neuroscience, Nature Neuroscience 20, 353–364 (2017).
- M. Newman, Networks (Oxford University Press, 2018).
- M. E. J. Newman, The structure and function of complex networks, SIAM Review 45, 167 (2003).
- A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, 2008).
- I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (John Wiley & Sons, California, United States, 1968).
- S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance (Bachelier, Paris, 1824).
- E. Schrödinger, What is Life? The Physical Aspect of the Living Cell and Mind (Cambridge University Press, Cambridge, United Kingdom, 1944).
- G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Physical Review E 60 (1999).
- C. Jarzynski, Nonequilibrium equality for free energy differences, Physical Review Letters 78 (1997).
- E. H. Feng and G. E. Crooks, Length of time’s arrow, Physical Review Letters 101 (2008).
- K. C. Huang, Y. Meir, and N. S. Wingreen, Dynamic structures in escherichia coli: Spontaneous formation of MinE rings and MinD polar zones, Proceedings of the National Academy of Sciences of the United States of America 100, 12724 (2003).
- P. Mehta and D. J. Schwab, Energetic costs of cellular computation, Proceedings of the National Academy of Sciences of the United States of America 109, 17978 (2012).
- J. L. England, Statistical physics of self-replication, Journal of Chemical Physics 139 (2013).
- U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports of Progress in Physics 475 (2012).
- M. Aguilera, M. Igarashi, and H. Shimazaki, Nonequilibrium thermodynamics of the asymmetric Sherrington-Kirkpatrick model, Nature Communications 14 (2023).
- T. Herpich, J. Thingna, and M. Esposito, Collective power: minimal model for thermodynamics of nonequilibrium phase transitions, Physical Review X 8 (2018).
- M. Suñé and A. Imparato, Out-of-equilibrium clock model at the verge of criticality, Physical Review Letters 123 (2019).
- J.Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Reviews of Modern Physics 48 (1976).
- G. Oster, A. Perelson, and A. Katchalsky, Network thermodynamics, Nature 234, 393 (1971).
- R. Rao and M. Esposito, Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics, Physical Review X 6 (2016).
- M. Polettini, A. Wachtel, and M. Esposito, Dissipation in noisy chemical networks: The role of deficiency, Journal of Chemical Physics 143 (2015).
- S. D. Cengio, V. Lecomte, and M. Polettini, Geometry of nonequilibrium reaction networks, Physical Review X 13 (2023).
- D. Papo and J. Buldú, Does the brain behave like a (complex) network? I. Dynamics, Physics of Life Reviews 48, 47 (2024).
- D. C. Krakauer, Symmetry–simplicity, broken symmetry–complexity, Interface Focus 13 (2023).
- S. Johnson, Digraphs are different: why directionality matters in complex systems, Journal of Physics: Complexity 1 (2020).
- M. Asllani and T. Carletti, Topological resilience in non-normal networked systems, Physical Review E 97 (2018).
- M. Asllani, R. Lambiotte, and T. Carletti, Structure and dynamical behavior of non-normal networks, Science Advances 4 (2018).
- R. MacKay, S. Johnson, and B. Sansom, How directed is a directed network?, Royal Society Open Science 7 (2020).
- N. Rodgers, P. Tiňo, and S. Johnson, Strong connectivity in real directed networks, Proceedings of the National Academy of Sciences of the United States of America 120 (2023).
- L. Trefethen and M. Embree, Spectra and Pseudospectra: The Behaviour of Non-Normal Matrices and Operators (Princeton University Press, 2005).
- N. Masuda, M. Porter, and R. Lambiotte, Random walks and diffusion on networks, Physics Reports 716-717, 1 (2017).
- C. Godrèche and J. Luck, Characterising the nonequilibrium stationary states of Ornstein–Uhlenbeck processes, Journal of Physics A: Mathematical and Theoretical 52 (2018).
- H. Nishimori, Statistical physics of spin glasses and information processing: an introduction (Clarendon Press, 2001).
- P. Erdös and A. Rényi, On random graphs I, Publicationes Mathematicae Debrecen 6, 290 (1959).
- R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications (Springer, 2017).
- P. Kale, A. Zalesky, and L. Gollo, Estimating the impact of structural directionality: How reliable are undirected connectomes?, Network Neuroscience 2, 259 (2018).
- We consider the (ir)reciprocity of weighted networks as defined in Ref. [68]. Alternative definitions of reciprocity for unweighted graphs are given in Ref. [67, 7].
- D. Garlaschelli and M. I. Loffredo, Patterns of link reciprocity in directed networks, Physical Review Letters 93 (2004).
- C. Voisin, Hodge Theory and Complex Algebraic Geometry (Cambridge University Press, 2010).
- Equivalently, the ‘SpringRank’ formulation considers directed springs between nodes and aims to find a ranking that minimizes the total energy of these springs [181].
- G. Hennequin, T. P. Vogels, and W. Gerstner, Non-normal amplification in random balanced neuronal networks, Physical Review E 86 (2012).
- G. Lindmark and C. Altafini, Centrality measures and the role of non-normality for network control energy reduction, IEEE Control Systems Letters 5, 1013 (2021).
- R. Lambiotte, Continuous-time random walks and temporal networks, in Temporal Network Theory (Springer, 2023) pp. 225–239.
- A. Schwarze and M. Porter, Motifs for processes on networks, SIAM Journal on Applied Dynamical Systems 20 (2021).
- U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem, Physical Review Letters 95 (2005).
- F. Nielsen, On the Jensen–Shannon symmetrization of distances relying on abstract means, Entropy 21 (2019).
- A. Dechant, Minimum entropy production, detailed balance and Wasserstein distance for continuous-time markov processes, Journal of Physics A: Mathematical and Theoretical 55 (2022).
- G. Uhlenbeck and L. Ornstein, On the theory of the Brownian motion, Physical Review 36 (1930).
- J. Zabczyk, Mathematical Control Theory: An Introduction (Springer, 2020).
- M. Lax, Fluctuations from the nonequilibrium steady state, Reviews of Modern Physics 32 (1960).
- V. Simoncini, Computational methods for linear matrix equations, SIAM Review 58 (2016).
- H. Huang and Y. Kabashima, Dynamics of asymmetric kinetic Ising systems revisited, Journal of Statistical Mechanics: Theory and Experiment (2014).
- M. Aguilera, S. A. Moosavi, and H. Shimazaki, A unifying framework for mean-field theories of asymmetric kinetic Ising systems, Nature Communications 58 (2021).
- M. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999).
- M. Esposito, Stochastic thermodynamics under coarse graining, Physical Review E 85 (2012).
- E. Roldán and J. M. R. Parrondo, Estimating dissipation from single stationary trajectories, Physical Review Letters 105 (2010).
- T. Martynec, S. H. L. Klapp1, and S. A. M. Loos, Entropy production at criticality in a nonequilibrium Potts model, New Journal of Physics 22 (2020).
- G. Bianconi, N. Gulbahce, and A. E. Motter, Local structure of directed networks, Physical Review Letters 100 (2008).
- S. Johnson and N. S. Jones, Looplessness in networks is linked to trophic coherence, Proceedings of the National Academy of Sciences of the United States of America 114, 5618 (2017).
- A. Seif, M. Hafezi, and C. Jarzynski, Machine learning the thermodynamic arrow of time, Nature Physics 17, 105 (2021).
- W. Gilpin, Generative learning for nonlinear dynamics, Nature Reviews Physics (2024).
- A. Frishman and P. Ronceray, Learning force fields from stochastic trajectories, Physical Review X 10 (2020).
- M. Timme and J. Casadiego, Revealing networks from dynamics: an introduction, Journal of Physics A: Mathematical and Theoretical 47 (2014).
- C. Zou and J. Feng, Granger causality vs. dynamic Bayesian network inference: a comparative study, BMC Bioinformatics 10 (2009).
- L. Harrison, W. Penny, and K. Friston, Multivariate autoregressive modeling of fMRI time series, NeuroImage 19, 1477 (2003).
- M. Gilson, E. Tagliazucchi, and R. Cofré, Entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain, Physical Review E 107 (2023).
- P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, 1992).
- D. Chen and R. Plemmons, Nonnegativity constraints in numerical analysis, in The Birth of Numerical Analysis (World Scientific, 2009) pp. 109–139.
- G. Deco, D. Vidaurre, and M. L. Kringelbach, Revisiting the global workspace orchestrating the hierarchical organization of the human brain, Nature Human Behaviour 5, 497 (2021).
- S. Dehaene, M. Kerszberg, and J.-P. Changeux, A neuronal model of a global workspace in effortful cognitive tasks, Proceedings of the National Academy of Sciences of the United States of America 95, 14529 (1998).
- S. Sieniutycz and P. Salamon, Finite-time thermodynamics and thermoeconomics (Taylor & Francis, 1990).
- V. N. Pokrovskii, Thermodynamics of Complex Systems: Principles and applications (IOP Publishing, 2020).
- N.-F. Chen, R. Roll, and S. A. Ross, Economic forces and the stock market, The Journal of Business 59, 383 (1986).
- P. Moretti and M. A. Muñoz, Griffiths phases and the stretching of criticality in brain networks, Nature Communications 4 (2013).
- D. J. de Solla Price, Networks of scientific papers, Science 149, 510 (1965).
- D. J. de Solla Price, A general theory of bibliometric and other cumulative advantage processes, Journal of the American Society for Information Science , 292 (1976).
- A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286, 509 (1999).
- S. Lamrous and M. Taileb, Divisive hierarchical k𝑘kitalic_k-means, IEEE International Conference on Computational Inteligence for Modelling Control and Automation (2006).
- H. J. Kappen and J. J. Spanjers, Mean field theory for asymmetric neural networks, Physical Review E 61 (2000).
- T. Tanaka, Information geometry of mean-field approximation, in Advanced mean field methods: Theory and practice (MIT Press, 2001) pp. 351–360.
- S. Amari, S. Ikeda, and H. Shimokawa, Information geometry of alpha-projection in mean field approximation, in Advanced mean field methods: Theory and practice (MIT Press, 2001) pp. 241–257.
- R. Thompson and C. Townsend, Impacts on stream food webs of native and exotic forest: an intercontinental comparison, Ecology 84, 145 (2003).
- J. Klaise and S. Johnson, The origin of motif families in food webs, Scientific Reports 7 (2017).
- R. M. Thompson and C. R. Townsend, Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams, OIKOS 108, 137 (2004).
- J. Bascompte, C. J. Melián, and E. Sala, Interaction strength combinations and the overfishing of a marine food web, Proceedings of the National Academy of Sciences of the United States of America 102, 5443 (2005).
- R. E. Ulanowicz and D. Baird, Nutrient controls on ecosystem dynamics: the chesapeake mesohaline community, Journal of Marine Systems 19, 159 (1999).
- B. J. Cole, Dominance hierarchies in leptothorax ants, Science 212, 83 (1981).
- T. Grant, Dominance and association among members of a captive and a free-ranging group of grey kangaroos (macropus giganteus), Animal Behaviour 21, 449 (1973).
- R. R. Christian and J. J. Luczkovich, Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels, Ecological Modelling 117, 99 (1999).
- L. Goldwasser and J. Roughgarden, Construction and analysis of a large Caribbean food web, Ecology 74, 1216 (1993).
- M. Huxham, S. Beaney, and D. Raffaelli, Do parasites reduce the chances of triangulation in a real food web?, OIKOS 76, 284 (1996).
- K. Havens, Scale and structure in natural food webs, Science 257, 1107 (1992).
- N. D. Martinez, Artifacts or attributes? Effects of resolution on the Little Rock Lake food web, Ecological Monographs 61, 367 (1991).
- S. Johnson, Network data repository from various sources.
- J. Link, Does food web theory work for marine ecosystems?, Marine Ecology Progress Series 230, 1 (2002).
- P. H. Warren, Spatial and temporal variation in the structure of a freshwater food web, OIKOS 55, 299 (1989).
- P. Yodzis, Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem, Journal of Animal Ecology 67, 635 (1998).
- R. Ulanowicz and D. L. DeAngelis, Network analysis of trophic dynamics in South Florida ecosystems, in U.S. Geological Survey Programon the South Florida Ecosystem; Proceedings of South Florida Restoration ScienceForum (BiblioGov, 1999).
- T. H. Clutton-Brock, P. J. Greenwood, and R. P. Powell, Ranks and relationships in highland ponies and highland cows, Zeitschrift für Tierpsychologie 41, 202 (1976).
- M. W. Schein and M. H. Fohrman, Social dominance relationships in a herd of dairy cattle, The British Journal of Animal Behaviour 3, 45 (1955).
- C. C. Hass, Social status in female bighorn sheep (Ovis canadensis): expression, development and reproductive correlates, Journal of Zoology 225, 509 (1991).
- D. F. Lott, Dominance relations and breeding rate in mature male American bison, Zeitschrift für Tierpsychologie 49, 418 (1979).
- F. F. Strayer and M. S. Cummins, Dominance Relations: An Ethological View of Human Conflict and Social Interaction (Livingstone, 1980).
- G. A. Polis, Complex trophic interactions in deserts: An empirical critique of food-web theory, The American Naturalist 138, 123 (1991).
- S. Opitz, Trophic interactions in Caribbean coral reefs, International Center for Living Aquatic Resources Management (1996).
- L. A. Adamic and N. Glance, The political blogosphere and the 2004 U.S. election: divided they blog, LinkKDD ’05: Proceedings of the 3rd international workshop on Link discovery , 36 (2005).
- A. Clauset, E. Tucker, and M. Sainz, The Colorado index of complex networks, (2016).
- J. Duncan MacRae, Direct factor analysis of sociometric data, Sociometry 23, 360 (1960).
- E. Galán-Vásquez, B. Luna, and A. Martínez-Antonio, The regulatory network of Pseudomonas aeruginosa, Microbial Informatics and Experimentation 1 (2011).
- L. Harriger, M. P. van den Heuvel, and O. Sporns, Rich club organization of macaque cerebral cortex and its role in network communication, PLOS One 7 (2012).
- D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393, 440 (1998).
- M. A. de Reus and M. P. van den Heuvel, Rich club organization and intermodule communication in the cat connectome, Journal of Neuroscience 33, 12929 (2013).
- M. Bota and L. W. Swanson, Online workbenches for neural network connections, Journal of Comparative Neurology 500, 807 (2006).
- E. Garfield, Index of citation networks produced by analyses from the software HistCite.
- W. D. Nooy, A. Mrvar, and V. Batagelj, Exploratory Social Network Analysis with Pajek (Cambridge University Press, 2018).
- M. J. Williams and M. Musolesi, Spatio-temporal networks: reachability, centrality and robustness, Royal Society Open Science 3 (2016).
- C. D. Bacco, D. B. Larremore, and C. Moore, A physical model for efficient ranking in networks, Science Advances 4 (2018).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.