Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Brain-inspired and Self-based Artificial Intelligence (2402.18784v1)

Published 29 Feb 2024 in cs.AI and q-bio.NC

Abstract: The question "Can machines think?" and the Turing Test to assess whether machines could achieve human-level intelligence is one of the roots of AI. With the philosophical argument "I think, therefore I am", this paper challenge the idea of a "thinking machine" supported by current AIs since there is no sense of self in them. Current artificial intelligence is only seemingly intelligent information processing and does not truly understand or be subjectively aware of oneself and perceive the world with the self as human intelligence does. In this paper, we introduce a Brain-inspired and Self-based Artificial Intelligence (BriSe AI) paradigm. This BriSe AI paradigm is dedicated to coordinating various cognitive functions and learning strategies in a self-organized manner to build human-level AI models and robotic applications. Specifically, BriSe AI emphasizes the crucial role of the Self in shaping the future AI, rooted with a practical hierarchical Self framework, including Perception and Learning, Bodily Self, Autonomous Self, Social Self, and Conceptual Self. The hierarchical framework of the Self highlights self-based environment perception, self-bodily modeling, autonomous interaction with the environment, social interaction and collaboration with others, and even more abstract understanding of the Self. Furthermore, the positive mutual promotion and support among multiple levels of Self, as well as between Self and learning, enhance the BriSe AI's conscious understanding of information and flexible adaptation to complex environments, serving as a driving force propelling BriSe AI towards real Artificial General Intelligence.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. Turing, A. M. (2009) Computing machinery and intelligence. Springer.
  2. Harvard university press.
  3. Vrin.
  4. Prescott, T. J. Robot Self (1–9). Springer Berlin Heidelberg (2020):(1–9). 10.1007/978-3-642-41610-1_205-1.
  5. Newell, A. (1994) Unified theories of cognition. Harvard University Press.
  6. Psychology Press.
  7. Artificial intelligence 33, 1–64.
  8. Laird, J. E. (2019) The Soar cognitive architecture. MIT press.
  9. O’Reilly, R. C. The leabra model of neural interactions and learning in the neocortex. Ph.D. thesis Carnegie Mellon University (1996).
  10. Journal of Experimental and Theoretical Artificial Intelligence 20, 197–218.
  11. Sun, R. (2003). A tutorial on clarion 5.0. Cognitive Science Department, Rensselaer Polytechnic Institute.
  12. Wang, P. (1995) Non-axiomatic reasoning system: Exploring the essence of intelligence. Indiana University.
  13. science 338, 1202–1205.
  14. Baars, B. J. (1993) A cognitive theory of consciousness. Cambridge University Press.
  15. International Journal of Machine Consciousness 1, 23–32.
  16. Maass, W. (1997). Networks of spiking neurons: the third generation of neural network models. Neural Netw 10, 1659–1671. 10.1016/S0893-6080(97)00011-7.
  17. Patterns 4.
  18. Neisser, U. (1988). Five kinds of self-knowledge. Philosophical psychology 1, 35–59.
  19. Neural Networks.
  20. arXiv preprint arXiv:2305.14174.
  21. Scientific Data 9, 746.
  22. arXiv preprint arXiv:2308.04749.
  23. arXiv preprint arXiv:2303.13077.
  24. Proceedings of the National Academy of Sciences 120, e2218173120.
  25. Nature 391, 756–756. doi.org/10.1038/35784.
  26. Patterns 4, 100888. URL: https://www.ncbi.nlm.nih.gov/pubmed/38106608. 10.1016/j.patter.2023.100888.
  27. Cognitive Computation 10, 307–320.
  28. Journal of cognitive neuroscience 19, 935–944.
  29. Computers in Biology and Medicine (107843).
  30. Science 322, 876–880.
  31. Journal of Neuroscience 33, 11070–11075.
  32. Pavlov, I. P. (1927) Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. London: Oxford University Press.
  33. iScience 24, 101980.
  34. Frontiers in neurorobotics 12, 56.
  35. Front. Neurosci. 16. 10.3389/fnins.2022.953368.
  36. Cognit Comput 10, 296–306. 10.1007/s12559-017-9511-3.
  37. Patterns 3, 100611. 10.1016/j.patter.2022.100611.
  38. Behavioral and Brain Sciences 1, 515–526.
  39. Cognition 13, 103–128.
  40. Frontiers in Neurorobotics (60).
  41. Baron-Cohen, S., Leslie, A. M., and Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition 21, 37–46.
  42. Nature reviews. Neuroscience 18. 10.1038/nrn.2017.72.
  43. Nat Rev Neurosci 17, 757–765. 10.1038/nrn.2016.135.
  44. Frontiers in Computational Neuroscience 16. URL: https://www.frontiersin.org/articles/10.3389/fncom.2022.784967. 10.3389/fncom.2022.784967.
  45. arXiv preprint arXiv:2301.07275.
  46. Frontiers in Systems Neuroscience 16, 845177.
  47. arXiv preprint arXiv:2401.06471.
  48. Frontiers in Computational Neuroscience 16, 861265.
  49. Similarity of neural network representations revisited. In: International Conference on Machine Learning. PMLR (2019):(3519–3529).
  50. iScience.
  51. arXiv preprint arXiv:2304.10749.
  52. arXiv preprint arXiv:2304.01015.
  53. Nature reviews neuroscience 5, 483–494.
  54. Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex 17, 2443–2452. 10.1093/cercor/bhl152.
  55. Trends in cognitive sciences 11, 49–57.
  56. Ageing research reviews 12, 833–839.
  57. Patterns.
  58. Nat Rev Neurosci 18, 769. 10.1038/nrn.2017.140.
  59. Neural Networks 19, 254–271. URL: https://www.sciencedirect.com/science/article/pii/S0893608006000268. 10.1016/j.neunet.2006.02.002. The Brain Mechanisms of Imitation Learning.
  60. Proceedings of the National Academy of Sciences 100, 5497–5502. URL: https://www.pnas.org/content/100/9/5497. 10.1073/pnas.0935845100. arXiv:https://www.pnas.org/content/100/9/5497.full.pdf.
  61. Current Biology 20, R353--R354. URL: https://www.sciencedirect.com/science/article/pii/S0960982210003271. 10.1016/j.cub.2010.03.013.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (20)
  1. Yi Zeng (153 papers)
  2. Feifei Zhao (29 papers)
  3. Yuxuan Zhao (33 papers)
  4. Dongcheng Zhao (48 papers)
  5. Enmeng Lu (12 papers)
  6. Qian Zhang (308 papers)
  7. Yuwei Wang (60 papers)
  8. Hui Feng (42 papers)
  9. Zhuoya Zhao (5 papers)
  10. Jihang Wang (5 papers)
  11. Qingqun Kong (12 papers)
  12. Yinqian Sun (14 papers)
  13. Yang Li (1142 papers)
  14. Guobin Shen (37 papers)
  15. Bing Han (74 papers)
  16. Yiting Dong (22 papers)
  17. Wenxuan Pan (11 papers)
  18. Xiang He (62 papers)
  19. Aorigele Bao (3 papers)
  20. Jin Wang (356 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.