Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions (2402.18652v1)

Published 28 Feb 2024 in cs.CR and cs.AR

Abstract: Read disturbance in modern DRAM chips is a widespread phenomenon and is reliably used for breaking memory isolation, a fundamental building block for building robust systems. RowHammer and RowPress are two examples of read disturbance in DRAM where repeatedly accessing (hammering) or keeping active (pressing) a memory location induces bitflips in other memory locations. Unfortunately, shrinking technology node size exacerbates read disturbance in DRAM chips over generations. As a result, existing defense mechanisms suffer from significant performance and energy overheads, limited effectiveness, or prohibitively high hardware complexity. In this paper, we tackle these shortcomings by leveraging the spatial variation in read disturbance across different memory locations in real DRAM chips. To do so, we 1) present the first rigorous real DRAM chip characterization study of spatial variation of read disturbance and 2) propose Sv\"ard, a new mechanism that dynamically adapts the aggressiveness of existing solutions based on the row-level read disturbance profile. Our experimental characterization on 144 real DDR4 DRAM chips representing 10 chip designs demonstrates a large variation in read disturbance vulnerability across different memory locations: in the part of memory with the worst read disturbance vulnerability, 1) up to 2x the number of bitflips can occur and 2) bitflips can occur at an order of magnitude fewer accesses, compared to the memory locations with the least vulnerability to read disturbance. Sv\"ard leverages this variation to reduce the overheads of five state-of-the-art read disturbance solutions, and thus significantly increases system performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (284)
  1. Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.
  2. R. H. Dennard, “Field-Effect Transistor Memory,” 1968, U.S. Patent 3,387,286.
  3. A. P. Fournaris, L. Pocero Fraile, and O. Koufopavlou, “Exploiting Hardware Vulnerabilities to Attack Embedded System Devices: A Survey of Potent Microarchitectural Attacks,” Electronics, 2017.
  4. D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rösler, “Attacking Deterministic Signature Schemes using Fault Attacks,” in EuroS&P, 2018.
  5. A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and K. Razavi, “Throwhammer: Rowhammer Attacks Over the Network and Defenses,” in USENIX ATC, 2018.
  6. S. Carre, M. Desjardins, A. Facon, and S. Guilley, “OpenSSL Bellcore’s Protection Helps Fault Attack,” in DSD, 2018.
  7. A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Software-only Reverse Engineering of Physical DRAM Mappings for Rowhammer Attacks,” in IVSW, 2018.
  8. Z. Zhang, Z. Zhan, D. Balasubramanian, X. Koutsoukos, and G. Karsai, “Triggering Rowhammer Hardware Faults on ARM: A Revisit,” in ASHES, 2018.
  9. S. Bhattacharya and D. Mukhopadhyay, “Advanced Fault Attacks in Software: Exploiting the Rowhammer Bug,” in Fault Tolerant Architectures for Cryptography and Hardware Security, 2018.
  10. M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain Kernel Privileges,” http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html, 2015.
  11. SAFARI Research Group, “RowHammer — GitHub Repository,” https://github.com/CMU-SAFARI/rowhammer, 2014.
  12. M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain Kernel Privileges,” Black Hat, 2015.
  13. V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic Rowhammer Attacks on Mobile Platforms,” in CCS, 2016.
  14. D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote Software-Induced Fault Attack in Javascript,” in DIMVA, 2016.
  15. K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip Feng Shui: Hammering a Needle in the Software Stack,” in USENIX Security, 2016.
  16. P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,” in USENIX Security, 2016.
  17. Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation,” in USENIX Security, 2016.
  18. E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina: Memory Deduplication as An Advanced Exploitation Vector,” in S&P, 2016.
  19. S. Bhattacharya and D. Mukhopadhyay, “Curious Case of RowHammer: Flipping Secret Exponent Bits using Timing Analysis,” in CHES, 2016.
  20. W. Burleson, O. Mutlu, and M. Tiwari, “Invited: Who is the Major Threat to Tomorrow’s Security? You, the Hardware Designer,” in DAC, 2016.
  21. R. Qiao et al., “A New Approach for RowHammer Attacks,” in HOST, 2016.
  22. F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Can’t Touch This: Software-Only Mitigation Against Rowhammer Attacks Targeting Kernel Memory,” in USENIX Security, 2017.
  23. Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the Processor via Rowhammer Attack,” in SysTEX, 2017.
  24. M. T. Aga, Z. B. Aweke, and T. Austin, “When Good Protections Go Bad: Exploiting Anti-DoS Measures to Accelerate Rowhammer Attacks,” in HOST, 2017.
  25. O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” in DATE, 2017.
  26. A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating Software Mitigations Against Rowhammer: A Surgical Precision Hammer,” in RAID, 2018.
  27. D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl, and Y. Yarom, “Another Flip in the Wall of Rowhammer Defenses,” in S&P, 2018.
  28. M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, and L. Lamster, “Nethammer: Inducing Rowhammer Faults Through Network Requests,” arXiv:1805.04956, 2018.
  29. V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna, C. Kruegel, H. Bos, and K. Razavi, “GuardION: Practical Mitigation of DMA-Based Rowhammer Attacks on ARM,” in DIMVA, 2018.
  30. P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU,” in S&P, 2018.
  31. L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks,” in S&P, 2019.
  32. S. Ji, Y. Ko, S. Oh, and J. Kim, “Pinpoint Rowhammer: Suppressing Unwanted Bit Flips on Rowhammer Attacks,” in ASIACCS, 2019.
  33. O. Mutlu, “RowHammer and Beyond,” in COSADE, 2019.
  34. S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, “Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware Fault Attacks,” in USENIX Security, 2019.
  35. A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading Bits in Memory Without Accessing Them,” in S&P, 2020.
  36. P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida, H. Bos, and K. Razavi, “TRRespass: Exploiting the Many Sides of Target Row Refresh,” in S&P, 2020.
  37. L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and O. Mutlu, “Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers,” in S&P, 2020.
  38. Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and B. Sunar, “JackHammer: Efficient Rowhammer on Heterogeneous FPGA–CPU Platforms,” arXiv:1912.11523, 2020.
  39. Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom, “PTHammer: Cross-User-Kernel-Boundary Rowhammer Through Implicit Accesses,” in MICRO, 2020.
  40. F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the Intelligence of Deep Neural Networks Through Targeted Chain of Bit Flips,” in USENIX Security, 2020.
  41. F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and K. Razavi, “SMASH: Synchronized Many-Sided Rowhammer Attacks from JavaScript,” in USENIX Security, 2021.
  42. H. Hassan, Y. C. Tugrul, J. S. Kim, V. van der Veen, K. Razavi, and O. Mutlu, “Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications,” in MICRO, 2021.
  43. P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “Blacksmith: Scalable Rowhammering in the Frequency Domain,” in S&P, 2022.
  44. M. C. Tol, S. Islam, B. Sunar, and Z. Zhang, “Toward Realistic Backdoor Injection Attacks on DNNs using RowHammer,” arXiv:2110.07683, 2022.
  45. A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu, M. Nissler, and D. Gruss, “Half-Double: Hammering From the Next Row Over,” in USENIX Security, 2022.
  46. L. Orosa, U. Rührmair, A. G. Yaglikci, H. Luo, A. Olgun, P. Jattke, M. Patel, J. Kim, K. Razavi, and O. Mutlu, “SpyHammer: Using RowHammer to Remotely Spy on Temperature,” arXiv:2210.04084, 2022.
  47. Z. Zhang, W. He, Y. Cheng, W. Wang, Y. Gao, D. Liu, K. Li, S. Nepal, A. Fu, and Y. Zou, “Implicit Hammer: Cross-Privilege-Boundary Rowhammer through Implicit Accesses,” IEEE TDSC, 2022.
  48. L. Liu, Y. Guo, Y. Cheng, Y. Zhang, and J. Yang, “Generating Robust DNN with Resistance to Bit-Flip based Adversarial Weight Attack,” IEEE TC, 2022.
  49. Y. Cohen, K. S. Tharayil, A. Haenel, D. Genkin, A. D. Keromytis, Y. Oren, and Y. Yarom, “HammerScope: Observing DRAM Power Consumption Using Rowhammer,” in CCS, 2022.
  50. M. Zheng, Q. Lou, and L. Jiang, “TrojViT: Trojan Insertion in Vision Transformers,” arXiv:2208.13049, 2022.
  51. M. Fahr Jr, H. Kippen, A. Kwong, T. Dang, J. Lichtinger, D. Dachman-Soled, D. Genkin, A. Nelson, R. Perlner, A. Yerukhimovich et al., “When Frodo Flips: End-to-End Key Recovery on FrodoKEM via Rowhammer,” CCS, 2022.
  52. Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “SpecHammer: Combining Spectre and Rowhammer for New Speculative Attacks,” in S&P, 2022.
  53. A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories,” in S&P, 2022.
  54. K. Park, D. Yun, and S. Baeg, “Statistical Distributions of Row-hammering Induced Failures in DDR3 Components,” Microelectronics Reliability, 2016.
  55. K. Park, C. Lim, D. Yun, and S. Baeg, “Experiments and Root Cause Analysis for Active-precharge Hammering Fault in DDR3 SDRAM under 3×\times× nm Technology,” Microelectronics Reliability, 2016.
  56. C. Lim, K. Park, and S. Baeg, “Active Precharge Hammering to Monitor Displacement Damage Using High-Energy Protons in 3x-nm SDRAM,” TNS, 2017.
  57. S.-W. Ryu, K. Min, J. Shin, H. Kwon, D. Nam, T. Oh, T.-S. Jang, M. Yoo, Y. Kim, and S. Hong, “Overcoming the Reliability Limitation in the Ultimately Scaled DRAM using Silicon Migration Technique by Hydrogen Annealing,” in IEDM, 2017.
  58. D. Yun, M. Park, C. Lim, and S. Baeg, “Study of TID Effects on One Row Hammering using Gamma in DDR4 SDRAMs,” in IRPS, 2018.
  59. T. Yang and X.-W. Lin, “Trap-Assisted DRAM Row Hammer Effect,” EDL, 2019.
  60. A. J. Walker, S. Lee, and D. Beery, “On DRAM RowHammer and the Physics on Insecurity,” IEEE TED, 2021.
  61. J. S. Kim, M. Patel, A. G. Yağlıkcı, H. Hassan, R. Azizi, L. Orosa, and O. Mutlu, “Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques,” in ISCA, 2020.
  62. L. Orosa, A. G. Yağlıkcı, H. Luo, A. Olgun, J. Park, H. Hassan, M. Patel, J. S. Kim, and O. Mutlu, “A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses,” in MICRO, 2021.
  63. A. G. Yağlıkcı, H. Luo, G. F. De Oliviera, A. Olgun, M. Patel, J. Park, H. Hassan, J. S. Kim, L. Orosa, and O. Mutlu, “Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices,” in DSN, 2022.
  64. M. N. I. Khan and S. Ghosh, “Analysis of Row Hammer Attack on STTRAM,” in ICCD, 2018.
  65. S. Agarwal, H. Dixit, D. Datta, M. Tran, D. Houssameddine, D. Shum, and F. Benistant, “Rowhammer for Spin Torque based Memory: Problem or Not?” in INTERMAG, 2018.
  66. H. Li, H.-Y. Chen, Z. Chen, B. Chen, R. Liu, G. Qiu, P. Huang, F. Zhang, Z. Jiang, B. Gao, L. Liu, X. Liu, S. Yu, H.-S. P. Wong, and J. Kang, “Write Disturb Analyses on Half-Selected Cells of Cross-Point RRAM Arrays,” in IRPS, 2014.
  67. K. Ni, X. Li, J. A. Smith, M. Jerry, and S. Datta, “Write Disturb in Ferroelectric FETs and Its Implication for 1T-FeFET AND Memory Arrays,” IEEE EDL, 2018.
  68. P. R. Genssler, V. M. van Santen, J. Henkel, and H. Amrouch, “On the Reliability of FeFET On-Chip Memory,” TC, 2022.
  69. O. Mutlu, A. Olgun, and A. G. Yaglikci, “Fundamentally Understanding and Solving RowHammer,” in ASP-DAC, 2023.
  70. H. Luo, A. Olgun, A. G. Yağlıkcı, Y. C. Tuğrul, S. Rhyner, M. B. Cavlak, J. Lindegger, M. Sadrosadati, and O. Mutlu, “RowPress: Amplifying Read Disturbance in Modern DRAM Chips,” in ISCA, 2023.
  71. H. Aydin and A. Sertbaş, “Cyber Security in Industrial Control Systems (ICS): A Survey of RowHammer Vulnerability,” Applied Computer Science, 2022.
  72. K. Mus, Y. Doröz, M. C. Tol, K. Rahman, and B. Sunar, “Jolt: Recovering TLS Signing Keys via Rowhammer Faults,” Cryptology ePrint Archive, 2022.
  73. J. Wang, H. Xu, C. Xiao, L. Zhang, and Y. Zheng, “Research and Implementation of Rowhammer Attack Method based on Domestic NeoKylin Operating System,” in ICFTIC, 2022.
  74. S. Lefforge, “Reverse Engineering Post-Quantum Cryptography Schemes to Find Rowhammer Exploits,” Bachelor’s Thesis, University of Arkansas, 2023.
  75. M. J. Fahr, “The Effects of Side-Channel Attacks on Post-Quantum Cryptography: Influencing FrodoKEM Key Generation Using the Rowhammer Exploit,” Master’s thesis, University of Arkansas, 2022.
  76. A. Kaur, P. Srivastav, and B. Ghoshal, “Work-in-Progress: DRAM-MaUT: DRAM Address Mapping Unveiling Tool for ARM Devices,” in CASES, 2022.
  77. K. Cai, Z. Zhang, and F. Yao, “On the Feasibility of Training-time Trojan Attacks through Hardware-based Faults in Memory,” in HOST, 2022.
  78. D. Li, D. Liu, Y. Ren, Z. Wang, Y. Sun, Z. Guan, Q. Wu, and J. Liu, “CyberRadar: A PUF-based Detecting and Mapping Framework for Physical Devices,” arXiv:2201.07597, 2022.
  79. A. Roohi and S. Angizi, “Efficient Targeted Bit-Flip Attack Against the Local Binary Pattern Network,” in HOST, 2022.
  80. F. Staudigl, H. Al Indari, D. Schön, D. Sisejkovic, F. Merchant, J. M. Joseph, V. Rana, S. Menzel, and R. Leupers, “NeuroHammer: Inducing Bit-Flips in Memristive Crossbar Memories,” in DATE, 2022.
  81. L.-H. Yang, S.-S. Huang, T.-L. Cheng, Y.-C. Kuo, and J.-J. Kuo, “Socially-Aware Collaborative Defense System against Bit-Flip Attack in Social Internet of Things and Its Online Assignment Optimization,” in ICCCN, 2022.
  82. S. Islam, K. Mus, R. Singh, P. Schaumont, and B. Sunar, “Signature Correction Attack on Dilithium Signature Scheme,” in Euro S&P, 2022.
  83. C. Tomita, M. Takita, K. Fukushima, Y. Nakano, Y. Shiraishi, and M. Morii, “Extracting the secrets of openssl with rambleed,” Sensors, 2022.
  84. L. France, F. Bruguier, M. Mushtaq, D. Novo, and P. Benoit, “Modeling Rowhammer in the gem5 Simulator,” in CHES 2022-Conference on Cryptographic Hardware and Embedded Systems, 2022.
  85. A. G. Yağlıkcı, M. Patel, J. S. Kim, R. Azizibarzoki, A. Olgun, L. Orosa, H. Hassan, J. Park, K. Kanellopoullos, T. Shahroodi, S. Ghose, and O. Mutlu, “BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows,” in HPCA, 2021.
  86. Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee, “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020.
  87. M. Redeker, B. F. Cockburn, and D. G. Elliott, “An Investigation into Crosstalk Noise in DRAM Structures,” in MTDT, 2002.
  88. K. Park, S. Baeg, S. Wen, and R. Wong, “Active-Precharge Hammering on a Row-Induced Failure in DDR3 SDRAMs Under 3x nm Technology,” in IIRW, 2014.
  89. C. Yang, C. K. Wei, Y. J. Chang, T. C. Wu, H. P. Chen, and C. S. Lai, “Suppression of RowHammer Effect by Doping Profile Modification in Saddle-Fin Array Devices for Sub-30-nm DRAM Technology,” TDMR, 2016.
  90. C.-M. Yang, C.-K. Wei, H.-P. Chen, J.-S. Luo, Y. J. Chang, T.-C. Wu, and C.-S. Lai, “Scanning Spreading Resistance Microscopy for Doping Profile in Saddle-Fin Devices,” IEEE Transactions on Nanotechnology, 2017.
  91. C. Lim, K. Park, G. Bak, D. Yun, M. Park, S. Baeg, S.-J. Wen, and R. Wong, “Study of Proton Radiation Effect to Row Hammer Fault in DDR4 SDRAMs,” Microelectronics Reliability, 2018.
  92. S. Gautam, S. Manhas, A. Kumar, M. Pakala, and E. Yieh, “Row Hammering Mitigation Using Metal Nanowire in Saddle Fin DRAM,” IEEE TED, 2019.
  93. Y. Jiang, H. Zhu, D. Sullivan, X. Guo, X. Zhang, and Y. Jin, “Quantifying RowHammer Vulnerability for DRAM Security,” in DAC, 2021.
  94. W. He, Z. Zhang, Y. Cheng, W. Wang, W. Song, Y. Gao, Q. Zhang, K. Li, D. Liu, and S. Nepal, “WhistleBlower: A System-level Empirical Study on RowHammer,” IEEE Transactions on Computers, 2023.
  95. S. Baeg, D. Yun, M. Chun, and S.-J. Wen, “Estimation of the Trap Energy Characteristics of Row Hammer-Affected Cells in Gamma-Irradiated DDR4 DRAM,” IEEE Transactions on Nuclear Science, 2022.
  96. O. Mutlu, “RowHammer,” https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-TopPicksinHardwareEmbeddedSecurity-November-8-2018.pdf, 2018, Top Picks in Hardware and Embedded Security.
  97. A. Olgun, M. Osseiran, A. G. Yaglikci, Y. C. Tugrul, H. Luo, S. Rhyner, B. Salami, J. Gomez Luna, and O. Mutlu, “An Experimental Analysis of RowHammer in HBM2 DRAM Chips,” in DSN Disrupt, 2023.
  98. A. Olgun, H. Hassan, A. G. Yağlıkcı, Y. C. Tuğrul, L. Orosa, H. Luo, M. Patel, E. Oğuz, and O. Mutlu, “DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure to Easily Test State-of-the-art DRAM Chips,” TCAD, 2023.
  99. L. Zhou, J. Li, Z. Qiao, P. Ren, Z. Sun, J. Wang, B. Wu, Z. Ji, R. Wang, K. Cao, and R. Huang, “Double-sided Row Hammer Effect in Sub-20 nm DRAM: Physical Mechanism, Key Features and Mitigation,” in IRPS, 2023.
  100. T. Alsop, “DRAM Manufacturers Revenue Share Worldwide from 2011 to 2022, by Quarter,” https://www.statista.com/statistics/271726/global-market-share-held-by-dram-chip-vendors-since-2010, 2023.
  101. E. Wang, “Due to Falling Shipments and Prices, Global DRAM Revenue for 3Q22 Showed QoQ Drop of Almost 30%—Unprecedented Since 2008 Financial Crisis,” https://www.trendforce.com/presscenter/news/20221116-11459.html, 2022.
  102. A. Saxena, G. Saileshwar, P. J. Nair, and M. Qureshi, “AQUA: Scalable Rowhammer Mitigation by Quarantining Aggressor Rows at Runtime,” in MICRO, 2022.
  103. M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: Enabling Low-Overhead Mitigation of Row-Hammer at Ultra-Low Thresholds via Hybrid Tracking,” in ISCA, 2022.
  104. G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Randomized Row-Swap: Mitigating Row Hammer by Breaking Spatial Correlation Between Aggressor and Victim Rows,” in ASPLOS, 2022.
  105. E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-Optimizing Memory Controllers: A Reinforcement Learning Approach,” in ISCA, 2008.
  106. T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie, “Half-DRAM: A High-Bandwidth and Low-Power DRAM Architecture from the Rethinking of Fine-Grained Activation,” in ISCA, 2014.
  107. M. Qureshi, D.-H. Kim, S. Khan, P. Nair, and O. Mutlu, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.
  108. J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012.
  109. J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, O. Mutlu, J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” in ISCA, 2013.
  110. O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors,” in MICRO, 2007.
  111. T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory Service in Multi-Core Systems,” in USENIX Security, 2007.
  112. O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.
  113. Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and High-Performance Scheduling Algorithm for Multiple Memory Controllers,” in HPCA, 2010.
  114. L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The Blacklisting Memory Scheduler: Achieving High Performance and Fairness at Low Cost,” in ICCD, 2014.
  115. Y. Kim et al., “A Case for Subarray-Level Parallelism (SALP) in DRAM,” in ISCA, 2012.
  116. H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and O. Mutlu, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” in HPCA, 2016.
  117. K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhimenko, S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in SIGMETRICS, 2016.
  118. D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko, V. Seshadri, and O. Mutlu, “Design-induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” POMACS, 2017.
  119. K. K. Chang, A. G. Yağlıkcı, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap, D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” in SIGMETRICS, 2017.
  120. M. Patel, J. S. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” in ISCA, 2017.
  121. J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices,” in HPCA, 2018.
  122. H. Hassan, M. Patel, J. S. Kim, A. G. Yağlıkcı, N. Vijaykumar, N. Mansouri Ghiasi, S. Ghose, and O. Mutlu, “CROW: A Low-Cost Substrate for Improving DRAM Performance, Energy Efficiency, and Reliability,” in ISCA, 2019.
  123. K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim, and O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” in HPCA, 2014.
  124. K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM,” in HPCA, 2016.
  125. S. Ghose, A. G. Yağlıkcı, R. Gupta, D. Lee, K. Kudrolli, W. Liu, H. Hassan, K. Chang, N. Chatterjee, A. Agrawal, M. O’Connor, and O. Mutlu, “What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study,” in SIGMETRICS, 2018.
  126. H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee, O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” in HPCA, 2017.
  127. S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM,” in DSN, 2016.
  128. S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM,” IEEE CAL, 2016.
  129. S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.
  130. V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.
  131. V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” in MICRO, 2017.
  132. J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines,” in ICCD, 2018.
  133. J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput,” in HPCA, 2019.
  134. M. Patel, J. S. Kim, H. Hassan, and O. Mutlu, “Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices,” in DSN, 2019.
  135. M. Patel, J. Kim, T. Shahroodi, H. Hassan, and O. Mutlu, “Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics,” in MICRO, 2020.
  136. D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” in HPCA, 2013.
  137. D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” in PACT, 2015.
  138. V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. Mowry, “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.
  139. H. Luo, T. Shahroodi, H. Hassan, M. Patel, A. G. Yağlıkcı, L. Orosa, J. Park, and O. Mutlu, “CLR-DRAM: A Low-Cost DRAM Architecture Enabling Dynamic Capacity-Latency Trade-Off,” in ISCA, 2020.
  140. V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,” arXiv:1905.09822, 2019.
  141. Y. Wang, L. Orosa, X. Peng, Y. Guo, S. Ghose, M. Patel, J. S. Kim, J. G. Luna, M. Sadrosadati, N. M. Ghiasi et al., “FIGARO: Improving System Performance via Fine-Grained In-DRAM Data Relocation and Caching,” in MICRO, 2020.
  142. Lenovo, “Row Hammer Privilege Escalation,” https://support.lenovo.com/us/en/product_security/row_hammer, 2015.
  143. Hewlett-Packard Enterprise, “HP Moonshot Component Pack Version 2015.05.0,” http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/component-pack/index.aspx, 2015.
  144. K. Bains et al., “Method, Apparatus and System for Providing a Memory Refresh,” US Patent: 9,030,903, 2015.
  145. K. S. Bains and J. B. Halbert, “Distributed Row Hammer Tracking,” US Patent: 9,299,400, 2016.
  146. K. Bains et al., “Row Hammer Refresh Command,” US Patents: 9,117,544 9,236,110 10,210,925, 2015.
  147. E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.
  148. S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-Based Tree Structure for Row Hammering Mitigation in DRAM,” IEEE CAL, 2017.
  149. S. Vig, S. Bhattacharya, D. Mukhopadhyay, and S.-K. Lam, “Rapid Detection of Rowhammer Attacks Using Dynamic Skewed Hash Tree,” in HASP, 2018.
  150. G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Stopping Microarchitectural Attacks Before Execution,” IACR Cryptology, 2016.
  151. S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating Wordline Crosstalk Using Adaptive Trees of Counters,” in ISCA, 2018.
  152. I. Kang, E. Lee, and J. H. Ahn, “CAT-TWO: Counter-Based Adaptive Tree, Time Window Optimized for DRAM Row-Hammer Prevention,” IEEE Access, 2020.
  153. M. J. Kim, J. Park, Y. Park, W. Doh, N. Kim, T. J. Ham, J. W. Lee, and J. H. Ahn, “Mithril: Cooperative Row Hammer Protection on Commodity DRAM Leveraging Managed Refresh,” in HPCA, 2022.
  154. D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural Support for Mitigating Row Hammering in DRAM Memories,” IEEE CAL, 2014.
  155. K. Bains, J. Halbert, C. Mozak, T. Schoenborn, and Z. Greenfield, “Row Hammer Refresh Command,” 2015, U.S. Patent 9,117,544.
  156. K. S. Bains and J. B. Halbert, “Distributed Row Hammer Tracking,” 2016, U.S. Patent 9,299,400.
  157. K. S. Bains and J. B. Halbert, “Row Hammer Monitoring Based on Stored Row Hammer Threshold Value,” US Patent: 10,083,737, 2016.
  158. Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin, “ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks,” in ASPLOS, 2016.
  159. Apple Inc., “About the Security Content of Mac EFI Security Update 2015-001,” https://support.apple.com/en-us/HT204934, 2015.
  160. M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM Stronger Against Row Hammering,” in DAC, 2017.
  161. J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.
  162. A. G. Yağlıkcı, J. S. Kim, F. Devaux, and O. Mutlu, “Security Analysis of the Silver Bullet Technique for RowHammer Prevention,” arXiv:2106.07084, 2021.
  163. K. Loughlin, S. Saroiu, A. Wolman, and B. Kasikci, “Stop! Hammer Time: Rethinking Our Approach to Rowhammer Mitigations,” in HotOS, 2021.
  164. F. Devaux and R. Ayrignac, “Method and Circuit for Protecting a DRAM Memory Device from the Row Hammer Effect,” US Patent: 10,885,966, 2021.
  165. Y. Wang, Y. Liu, P. Wu, and Z. Zhang, “Discreet-PARA: Rowhammer Defense with Low Cost and High Efficiency,” in ICCD, 2021.
  166. M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “REGA: Scalable Rowhammer Mitigation with Refresh-Generating Activations,” in S&P, 2022.
  167. Z. Zhang, Y. Cheng, M. Wang, W. He, W. Wang, S. Nepal, Y. Gao, K. Li, Z. Wang, and C. Wu, “SoftTRR: Protect Page Tables against Rowhammer Attacks using Software-only Target Row Refresh,” in USENIX ATC, 2022.
  168. B. K. Joardar, T. K. Bletsch, and K. Chakrabarty, “Learning to Mitigate RowHammer Attacks,” in DATE, 2022.
  169. A. G. Yağlikci, A. Olgun, M. Patel, H. Luo, H. Hassan, L. Orosa, O. Ergin, and O. Mutlu, “HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-Shelf DRAM Chips,” in MICRO, 2022.
  170. S. Saroiu and A. Wolman, “How to Configure Row-Sampling-Based Rowhammer Defenses,” DRAMSec, 2022.
  171. F. N. Bostancı, I. E. Yüksel, A. Olgun, K. Kanellopoulos, Y. C. Tugrul, A. G. Yaglıkçı, M. Sadrosadati, and O. Mutlu, “CoMeT: Count-Min-Sketch-based Row Tracking to Mitigate RowHammer at Low Cost,” in HPCA, 2024.
  172. A. Olgun, Y. C. Tugrul, F. N. Bostancı, I. E. Yüksel, H. Luo, S. Rhyner, A. G. Yaglıkçı, G. F. Oliveira, and O. Mutlu, “ABACuS: All-Bank Activation Counters for Scalable and Low Overhead RowHammer Mitigation,” in arXiv:2310.09977 [cs.CR], 2024.
  173. B. K. Joardar, T. K. Bletsch, and K. Chakrabarty, “Machine Learning-based Rowhammer Mitigation,” TCAD, 2022.
  174. Z. Greenfield and T. Levy, “Throttling Support for Row-Hammer Counters,” 2016, U.S. Patent 9,251,885.
  175. R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida, and K. Razavi, “ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks,” in OSDI, 2018.
  176. M. Wi, J. Park, S. Ko, M. J. Kim, N. S. Kim, E. Lee, and J. H. Ahn, “SHADOW: Preventing Row Hammer in DRAM with Intra-Subarray Row Shuffling,” in HPCA.   IEEE, 2023.
  177. J. Woo, G. Saileshwar, and P. J. Nair, “Scalable and Secure Row-Swap: Efficient and Safe Row Hammer Mitigation in Memory Systems,” in HPCA, 2023.
  178. B. Aichinger, “DDR Memory Errors Caused by Row Hammer,” in HPEC, 2015.
  179. H. Gomez, A. Amaya, and E. Roa, “DRAM Row-Hammer Attack Reduction Using Dummy Cells,” in NORCAS, 2016.
  180. G.-H. Lee, S. Na, I. Byun, D. Min, and J. Kim, “CryoGuard: A Near Refresh-Free Robust DRAM Design for Cryogenic Computing,” in ISCA, 2021.
  181. J. Juffinger, L. Lamster, A. Kogler, M. Eichlseder, M. Lipp, and D. Gruss, “CSI: Rowhammer–Cryptographic Security and Integrity against Rowhammer (to appear),” in S&P, 2023.
  182. E. Manzhosov, A. Hastings, M. Pancholi, R. Piersma, M. T. I. Ziad, and S. Sethumadhavan, “Revisiting Residue Codes for Modern Memories,” in MICRO, 2022.
  183. S. M. Ajorpaz, D. Moghimi, J. N. Collins, G. Pokam, N. Abu-Ghazaleh, and D. Tullsen, “EVAX: Towards a Practical, Pro-active & Adaptive Architecture for High Performance & Security,” in MICRO, 2022.
  184. A. Naseredini, M. Berger, M. Sammartino, and S. Xiong, “ALARM: Active LeArning of Rowhammer Mitigations,” https://users.sussex.ac.uk/~mfb21/rh-draft.pdf, 2022.
  185. H. Hassan, A. Olgun, A. G. Yaglikci, H. Luo, and O. Mutlu, “A Case for Self-Managing DRAM Chips: Improving Performance, Efficiency, Reliability, and Security via Autonomous in-DRAM Maintenance Operations,” arXiv:2207.13358, 2022.
  186. Z. Zhang, Z. Zhan, D. Balasubramanian, B. Li, P. Volgyesi, and X. Koutsoukos, “Leveraging EM Side-Channel Information to Detect Rowhammer Attacks,” in S&P, 2020.
  187. J.-W. Han, J. Kim, D. Beery, K. D. Bozdag, P. Cuevas, A. Levi, I. Tain, K. Tran, A. J. Walker, S. V. Palayam, A. Arreghini, A. Furnémont, and M. Meyyappan, “Surround Gate Transistor With Epitaxially Grown Si Pillar and Simulation Study on Soft Error and Rowhammer Tolerance for DRAM,” IEEE TED, 2021.
  188. A. Fakhrzadehgan, Y. N. Patt, P. J. Nair, and M. K. Qureshi, “SafeGuard: Reducing the Security Risk from Row-Hammer via Low-Cost Integrity Protection,” in HPCA, 2022.
  189. S. Saroiu, A. Wolman, and L. Cojocar, “The Price of Secrecy: How Hiding Internal DRAM Topologies Hurts Rowhammer Defenses,” in IRPS, 2022.
  190. K. Loughlin, S. Saroiu, A. Wolman, Y. A. Manerkar, and B. Kasikci, “MOESI-Prime: Preventing Coherence-Induced Hammering in Commodity Workloads,” in ISCA, 2022.
  191. R. Zhou, S. Tabrizchi, A. Roohi, and S. Angizi, “LT-PIM: An LUT-Based Processing-in-DRAM Architecture With RowHammer Self-Tracking,” IEEE CAL, 2022.
  192. S. Hong, D. Kim, J. Lee, R. Oh, C. Yoo, S. Hwang, and J. Lee, “DSAC: Low-Cost Rowhammer Mitigation Using In-DRAM Stochastic and Approximate Counting Algorithm,” arXiv:2302.03591, 2023.
  193. M. Marazzi, F. Solt, P. Jattke, K. Takashi, and K. Razavi, “ProTRR: Principled yet Optimal In-DRAM Target Row Refresh,” in S&P, 2023.
  194. A. Di Dio, K. Koning, H. Bos, and C. Giuffrida, “Copy-on-Flip: Hardening ECC Memory Against Rowhammer Attacks,” in NDSS, 2023.
  195. S. Sharma, D. Sanyal, A. Mukhopadhyay, and R. H. Shaik, “A Review on Study of Defects of DRAM-RowHammer and Its Mitigation,” Journal For Basic Sciences, 2022.
  196. J. H. Park, S. Y. Kim, D. Y. Kim, G. Kim, J. W. Park, S. Yoo, Y.-W. Lee, and M. J. Lee, “RowHammer Reduction Using a Buried Insulator in a Buried Channel Array Transistor,” IEEE Transactions on Electron Devices, 2022.
  197. W. Kim, C. Jung, S. Yoo, D. Hong, J. Hwang, J. Yoon, O. Jung, J. Choi, S. Hyun, M. Kang et al., “A 1.1 V 16Gb DDR5 DRAM with Probabilistic-Aggressor Tracking, Refresh-Management Functionality, Per-Row Hammer Tracking, a Multi-Step Precharge, and Core-Bias Modulation for Security and Reliability Enhancement,” in ISSCC.   IEEE, 2023.
  198. C. Gude Ramarao, K. T. Kumar, G. Ujjinappa, and B. V. D. Naidu, “Defending SoCs with FPGAs from Rowhammer Attacks,” Material Science, 2023.
  199. K. Guha and A. Chakrabarti, “Criticality based Reliability from Rowhammer Attacks in Multi-User-Multi-FPGA Platform,” in VLSID.   IEEE, 2022.
  200. L. France, F. Bruguier, D. Novo, M. Mushtaq, and P. Benoit, “Reducing the Silicon Area Overhead of Counter-Based Rowhammer Mitigations,” in 18th CryptArchi Workshop, 2022.
  201. T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, “Panopticon: A Complete In-DRAM Rowhammer Mitigation,” in DRAMSec, 2021.
  202. S. Enomoto, H. Kuzuno, and H. Yamada, “Efficient Protection Mechanism for CPU Cache Flush Instruction Based Attacks,” IEICE Transactions on Information and Systems, 2022.
  203. K. Arıkan, A. Palumbo, L. Cassano, P. Reviriego, S. Pontarelli, G. Bianchi, O. Ergin, and M. Ottavi, “Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches,” VLSI, 2022.
  204. A. Saxena, G. Saileshwar, J. Juffinger, A. Kogler, D. Gruss, and M. Qureshi, “PT-Guard: Integrity-Protected Page Tables to Defend Against Breakthrough Rowhammer Attacks,” in DSN, 2023.
  205. R. Zhou, S. Ahmed, A. S. Rakin, and S. Angizi, “DNN-Defender: An in-DRAM Deep Neural Network Defense Mechanism for Adversarial Weight Attack,” arXiv:2305.08034, 2023.
  206. M. Patel, T. Shahroodi, A. Manglik, A. G. Yaglikci, A. Olgun, H. Luo, and O. Mutlu, “A Case for Transparent Reliability in DRAM Systems,” arXiv:2204.10378, 2022.
  207. Xilinx Inc., “Xilinx Alveo U200 FPGA Board,” https://www.xilinx.com/products/boards-and-kits/alveo/u200.html.
  208. “Bittware XUSP3S FPGA Board,” https://www.bittware.com/fpga/xus-p3s/.
  209. A. Olgun, H. Hassan, A. G. Yağlıkcı, Y. C. Tuğrul, L. Orosa, H. Luo, M. Patel, E. Oğuz, and O. Mutlu, “DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure to Easily Test State-of-the-art DRAM Chips,” arXiv:2211.05838, 2022.
  210. SAFARI Research Group, “DRAM Bender — GitHub Repository,” https://github.com/CMU-SAFARI/DRAM-Bender, 2022.
  211. Maxwell, “FT20X User Manual,” https://www.maxwell-fa.com/upload/files/base/8/m/311.pdf.
  212. M. Patel, G. F. de Oliveira Jr., and O. Mutlu, “HARP: Practically and Effectively Identifying Uncorrectable Errors in Main Memory Chips That Use On-Die ECC,” in MICRO, 2021.
  213. R. T. Smith, J. D. Chlipala, J. F. Bindels, R. G. Nelson, F. H. Fischer, and T. F. Mantz, “Laser Programmable Redundancy and Yield Improvement in a 64K DRAM,” JSSC, 1981.
  214. M. Horiguchi, “Redundancy Techniques for High-Density DRAMs,” in ISIS, 1997.
  215. S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” in MICRO, 2017.
  216. S. Ghose, T. Li, N. Hajinazar, D. S. Cali, and O. Mutlu, “Demystifying Complex Workload–DRAM Interactions: An Experimental Study,” in SIGMETRICS, 2019.
  217. L. Mukhanov, D. S. Nikolopoulos, and G. Karakonstantis, “DStress: Automatic Synthesis of DRAM Reliability Stress Viruses using Genetic Algorithms (Best Paper Nominee),” in MICRO, 2020.
  218. A. J. van de Goor and I. Schanstra, “Address and Data Scrambling: Causes and Impact on Memory Tests,” in DELTA, 2002.
  219. Samsung, “M393A2K40CB2-CTD Specifications,” https://semiconductor.samsung.com/dram/module/rdimm/m393a2k40cb2-ctd/.
  220. Samsung, “K4A8G085WB-BCTD Specifications,” https://semiconductor.samsung.com/dram/ddr/ddr4/k4a8g085wb-bctd/.
  221. S. Hynix, “H5ANAG8NCJR-XN Specifications,” https://www.memory-distributor.com/h5anag8ncjr-xnc.html.
  222. S. Hynix, “H5AN8G8NDJR-XNC Specifications,” https://www.memory-distributor.com/h5an8g8ndjr-xnc.html.
  223. Micron, “MTA4ATF1G64HZ-3G2E1 Specifications,” https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/sodimm/ddr4/atf4c1gx64hz.pdf?rev=f436f917f8d74c08bf32a576a15b5e66.
  224. Micron, “MT40A1G16KD-062E Specifications,” https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf.
  225. Micron, “MTA18ASF2G72PZ-2G3B1QK Specifications,” https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/rdimm/ddr4/asf18c2gx72pz.pdf?rev=6ef1f46c2b2e4e95824c859fd05c01b5.
  226. Micron, “MTA36ASF8G72PZ-2G9E1TI Specifications,” https://www.micron.com/products/dram-modules/rdimm/part-catalog/mta36asf8g72pz-2g9/mta36asf8g72pz-2g9e1.
  227. Micron, “MTA4ATF1G64HZ-3G2B2 Specifications,” https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/sodimm/ddr4/atf4c1gx64hz.pdf?rev=f436f917f8d74c08bf32a576a15b5e66.
  228. E. Biran, “The Cambridge Dictionary of Statistics,” Cambridge University Press, 1998.
  229. D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” in HPCA, 2015.
  230. K. Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” in SIGMETRICS, 2017.
  231. J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Clustering Algorithm,” J. R. Stat. Soc. C-Appl., 1979.
  232. P. J. Rousseeuw, “Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis,” J. Comput. Appl. Math., 1987.
  233. F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs,” in MICRO, 2019.
  234. F. Gao, G. Tziantzioulis, and D. Wentzlaff, “FracDRAM: Fractional Values in Off-the-Shelf DRAM,” in MICRO, 2022.
  235. A. Olgun, J. G. Luna, K. Kanellopoulos, B. Salami, H. Hassan, O. Ergin, and O. Mutlu, “PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM,” TACO, 2022.
  236. I. E. Yuksel, Y. C. Tugrul, F. N. Bostanci, A. G. Yaglikci, A. Olgun, G. F. de Oliveira, M. Soysal, H. Luo, J. G. Luna, M. Sadrosadati, and O. Mutlu, “PULSAR: Simultaneous Many-Row Activation for Reliable and High-Performance Computing in Off-the-Shelf DRAM Chips,” in arXiv:2312.02880 [cs.AR], 2023.
  237. I. E. Yuksel, Y. C. Tugrul, A. Olgun, F. N. Bostanci, A. G. Yaglikci, G. F. de Oliveira, H. Luo, J. G. Luna, M. Sadrosadati, and O. Mutlu, “Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis,” in HPCA, 2024.
  238. V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” in PACT, 2012.
  239. M. Qureshi, “Rethinking ECC in the Era of Row-Hammer,” DRAMSec, 2021.
  240. S. Hong, P. J. Nair, B. Abali, A. Buyuktosunoglu, K.-H. Kim, and M. B. Healy, “Attaché: Towards Ideal Memory Compression by Mitigating Metadata Bandwidth Overheads,” in MICRO, 2018.
  241. J. Meza et al., “Enabling Efficient and Scalable Hybrid Memories Using Fine-Granularity DRAM Cache Management,” IEEE CAL, 2012.
  242. R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration in Innovative Off-Chip Memories,” ACM TACO, 2017.
  243. WikiChip, “Cascade Lake SP - Intel,” https://en.wikichip.org/wiki/intel/cores/cascade_lake_sp.
  244. Samsung, “288pin Registered DIMM based on 8Gb B-die, Rev 1.91,” https://semiconductor.samsung.com/resources/data-sheet/20170731_DDR4_8Gb_B_die_Registered_DIMM_Rev1.91_May.17.pdf, 2017.
  245. SAFARI Research Group, “Ramulator — GitHub Repository,” https://github.com/CMU-SAFARI/ramulator.
  246. Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL, 2016.
  247. “Ramulator 2.0,” https://github.com/CMU-SAFARI/ramulator2, 2023.
  248. H. Luo, Y. C. Tugrul, F. N. Bostancı, A. Olgun, A. G. Yaglıkçı, and O. Mutlu, “Ramulator 2.0: A Modern, Modular, and Extensible DRAM Simulator,” 2023.
  249. S. Rixner et al., “Memory Access Scheduling,” in ISCA, 2000.
  250. W. K. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM That Maximizes Throughput by Allowing Memory Requests and Commands to Be Issued Out of Order,” 1997, U.S. Patent 5,630,096.
  251. D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist Open-Page: A DRAM Page-Mode Scheduling Policy for the Many-Core Era,” in MICRO, 2011.
  252. S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access Scheduling,” in ISCA, 2000.
  253. Standard Performance Evaluation Corp., “SPEC CPU 2006,” http://www.spec.org/cpu2006/.
  254. Standard Performance Evaluation Corp., “SPEC CPU 2017,” http://www.spec.org/cpu2017, 2017.
  255. J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf, “MediaBench II Video: Expediting the next Generation of Video Systems Research,” Microprocess. Microsyst., 2009.
  256. B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking Cloud Serving Systems with YCSB,” in SoCC, 2010.
  257. A. Snavely and D. M. Tullsen, “Symbiotic Job Scheduling for A Simultaneous Multithreaded Processor,” in ASPLOS, 2000.
  258. S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multiprogram Workloads,” IEEE Micro, 2008.
  259. P. Michaud, “Demystifying Multicore Throughput Metrics,” IEEE CAL, 2012.
  260. K. Luo, J. Gummaraju, and M. Franklin, “Balancing Thoughput and Fairness in SMT Processors,” in ISPASS, 2001.
  261. Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster Memory Scheduling: Exploiting Differences in Memory Access Behavior,” in MICRO, 2010.
  262. L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS: Balancing Performance, Fairness and Complexity in Memory Access Scheduling,” TPDS, 2016.
  263. L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems,” in HPCA, 2013.
  264. L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory,” in MICRO, 2015.
  265. E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via Source Throttling: A Configurable and High Performance Fairness Substrate for Multi Core Memory Systems,” in ASPLOS, 2010.
  266. E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-Aware Shared Resource Management for Multi-Core Systems,” in ISCA, 2011.
  267. R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Application-Aware Prioritization Mechanisms for On-Chip Networks,” in MICRO, 2009.
  268. R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi, “Application-to-Core Mapping Policies to Reduce Memory System Interference in Multi-Core Systems,” in HPCA, 2013.
  269. A. Olgun, M. Osseiran, A. G. Yaglikci, Y. C. Tugrul, H. Luo, S. Rhyner, B. Salami, J. Gomez Luna, and O. Mutlu, “An Experimental Analysis of RowHammer in HBM2 DRAM Chips,” in arXiv:2305.17918 [cs.CR], 2023.
  270. S. K. Gautam, S. K. Manhas, A. Kumar, M. Pakala, and Y. Ellie, “Row Hammering Mitigation Using Metal Nanowire in Saddle Fin DRAM,” IEEE TED, 2019.
  271. J. Woo, G. Saileshwar, and P. J. Nair, “Scalable and Secure Row-Swap: Efficient and Safe Row Hammer Mitigation in Memory Systems,” arXiv:2212.12613 [cs.CR], 2022.
  272. R. Zhou, S. Tabrizchi, A. Roohi, and S. Angizi, “LT-PIM: An LUT-based Processing-in-DRAM Architecture with RowHammer Self-Tracking,” IEEE CAL, 2022.
  273. C. Bock, F. Brasser, D. Gens, C. Liebchen, and A.-R. Sadeghi, “RIP-RH: Preventing Rowhammer-Based Inter-Process Attacks,” in Asia-CCS, 2019.
  274. Memory.NET, “HMAA4GU6AJR8N-XN Specifications,” https://memory.net/product/hmaa4gu6ajr8n-xn-sk-hynix-1x-32gb-ddr4-3200-udimm-pc4-25600u-dual-rank-x8-module/.
  275. S. Hynix, “H5ANAG8NAJR-XN Specifications,” https://www.memory-distributor.com/h5anag8najr-xnc.html.
  276. Memory.NET, “HMAA4GU7CJR8N-XN Specifications,” https://memory.net/product/hmaa4gu7cjr8n-xn-sk-hynix-1x-32gb-ddr4-3200-ecc-udimm-pc4-25600e-dual-rank-x8-module/.
  277. Kingston, “KSM32RD8/16HDR Specifications,” https://www.kingston.com/dataSheets/KSM32RD8_16HDR.pdf, 2020.
  278. Micron, “MT40A2G4WE-083E:B Specifications,” https://www.micron.com/products/dram/ddr4-sdram/part-catalog/mt40a2g4we-083e.
  279. Micron, “MT40A4G4JC-062E:E Specifications,” https://eu.mouser.com/datasheet/2/671/mict_s_a0010972464_1-2291055.pdf.
  280. Micron, “MT40A1G16RC-062E:B Specifications,” https://www.micron.com/products/dram/ddr4-sdram/part-catalog/mt40a1g16rc-062e.
  281. Samsung, “M393A1K43BB1-CTD Specifications,” https://semiconductor.samsung.com/dram/module/rdimm/m393a1k43bb1-ctd/.
  282. GSKill, “F4-2400C17S-8GNT Specifications,” https://www.gskill.com/product/165/186/1535961538/F4-2400C17S-8GNT.
  283. Samsung, “K4A4G085WF-BCTD Specifications,” https://semiconductor.samsung.com/dram/ddr/ddr4/k4a4g085wf-bctd/.
  284. Samsung, “K4A8G045WC-BCTD Specifications,” https://semiconductor.samsung.com/emea/dram/ddr/ddr4/k4a8g045wc-bctd/.
Citations (6)

Summary

  • The paper characterizes spatial variations in DDR4 DRAM chips to measure vulnerabilities, including differences in bit error rates and activation counts.
  • It introduces Svärd, a dynamic mechanism that adapts existing defenses to mitigate read disturbance effects and significantly boost system throughput.
  • Experimental results demonstrate up to 4.88x performance improvement in extreme conditions, highlighting the benefit of dynamic, profile-based memory protection.

Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions

The paper "Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions" presents a comprehensive examination of DRAM read disturbances, specifically focusing on the spatial variations in such disturbances across different memory locations. This research addresses two major read disturbance phenomena in DRAM—RowHammer and RowPress—highlighting the potential vulnerabilities in modern DRAM chips due to technology scaling. The investigation focuses on proposing improved solutions leveraging these variations to mitigate performance and energy overheads in existing DRAM protection mechanisms.

The paper presents the first significant characterization of spatial variations in DRAM read disturbances through experimentation on two DDR4 DRAM chips across ten different chip designs. The results reveal considerable deviations in read disturbance vulnerabilities, characterized by bit error rate (BER) and minimum activation count to cause bitflips (hcfirst), across memory rows and subarrays. Notably, in the most vulnerable parts of the memory, twice the number of bitflips could occur and at significantly fewer accesses compared to more stable regions. This insight into the irregular vulnerability distribution provides a foundation for optimizing current mitigation strategies.

The paper proposes a novel mechanism, Svärd, which adapts the defense strategy dynamically based on detected row-level read disturbance vulnerability profiles. By integrating Svärd with five modern read disturbance solutions, namely AQUA, BlockHammer, Hydra, PARA, and RRS, the research demonstrates a substantial reduction in the associated performance overhead. Utilizing three representative spatial profiles from different manufacturers, the evaluation shows that Svärd significantly enhances system throughput, with performance improvements reaching up to 4.88 times over BlockHammer at extreme read disturbance conditions. This adaptability in Svärd allows it to tune the aggressiveness of existing solutions more precisely, reducing unnecessary overprotection and consequently boosting performance.

Furthermore, the characterization and correlation analyses done on DRAM chips reveal limited utility in predicting disturbance vulnerabilities solely based on spatial features like row addresses. Although some models showed modest correlations, the findings suggest the necessity for more nuanced approaches to efficiently predict vulnerability profiles.

The implications of this research are twofold: first, it provides a robust method for identifying variations in vulnerability across DRAM structures, which can be harnessed to enhance defenses against read disturbances; second, it paves the way for future research into dynamic and context-aware memory protection mechanisms that adapt based on detected vulnerabilities, rather than a one-size-fits-all approach. Given the increasing susceptibility of newer DRAM technologies to read disturbances, this refined approach offers a path toward maintaining robustness within memory systems as technology scales further. Continuing this line of research could result in more refined and efficient DRAM safety methods, crucial for maintaining data integrity in future computing environments.

Youtube Logo Streamline Icon: https://streamlinehq.com