Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Read Disturbance in High Bandwidth Memory: A Detailed Experimental Study on HBM2 DRAM Chips (2310.14665v3)

Published 23 Oct 2023 in cs.CR and cs.AR

Abstract: We experimentally demonstrate the effects of read disturbance (RowHammer and RowPress) and uncover the inner workings of undocumented read disturbance defense mechanisms in High Bandwidth Memory (HBM). Detailed characterization of six real HBM2 DRAM chips in two different FPGA boards shows that (1) the read disturbance vulnerability significantly varies between different HBM2 chips and between different components (e.g., 3D-stacked channels) inside a chip, (2) DRAM rows at the end and in the middle of a bank are more resilient to read disturbance, (3) fewer additional activations are sufficient to induce more read disturbance bitflips in a DRAM row if the row exhibits the first bitflip at a relatively high activation count, (4) a modern HBM2 chip implements undocumented read disturbance defenses that track potential aggressor rows based on how many times they are activated. We describe how our findings could be leveraged to develop more powerful read disturbance attacks and more efficient defense mechanisms. We open source all our code and data to facilitate future research at https://github.com/CMU-SAFARI/HBM-Read-Disturbance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (194)
  1. Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.
  2. O. Mutlu and J. Kim, “RowHammer: A Retrospective,” IEEE TCAD Special Issue on Top Picks in Hardware and Embedded Security, 2019.
  3. O. Mutlu, A. Olgun, and A. G. Yaglikci, “Fundamentally Understanding and Solving RowHammer,” in ASP-DAC, 2023.
  4. H. Luo, A. Olgun, A. G. Yağlıkcı, Y. C. Tuğrul, S. Rhyner, M. B. Cavlak, J. Lindegger, M. Sadrosadati, and O. Mutlu, “RowPress: Amplifying Read Disturbance in Modern DRAM Chips,” in ISCA, 2023.
  5. A. P. Fournaris, L. Pocero Fraile, and O. Koufopavlou, “Exploiting Hardware Vulnerabilities to Attack Embedded System Devices: A Survey of Potent Microarchitectural Attacks,” Electronics, 2017.
  6. D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rösler, “Attacking Deterministic Signature Schemes using Fault Attacks,” in EuroS&P, 2018.
  7. A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and K. Razavi, “Throwhammer: Rowhammer Attacks Over the Network and Defenses,” in USENIX ATC, 2018.
  8. S. Carre, M. Desjardins, A. Facon, and S. Guilley, “OpenSSL Bellcore’s Protection Helps Fault Attack,” in DSD, 2018.
  9. A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Software-only Reverse Engineering of Physical DRAM Mappings for Rowhammer Attacks,” in IVSW, 2018.
  10. Z. Zhang, Z. Zhan, D. Balasubramanian, X. Koutsoukos, and G. Karsai, “Triggering Rowhammer Hardware Faults on ARM: A Revisit,” in ASHES, 2018.
  11. S. Bhattacharya and D. Mukhopadhyay, “Advanced Fault Attacks in Software: Exploiting the Rowhammer Bug,” in Fault Tolerant Architectures for Cryptography and Hardware Security, 2018.
  12. M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain Kernel Privileges,” http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html, 2015.
  13. SAFARI Research Group, “RowHammer — GitHub Repository,” https://github.com/CMU-SAFARI/rowhammer, 2014.
  14. M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain Kernel Privileges,” Black Hat, 2015.
  15. V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic Rowhammer Attacks on Mobile Platforms,” in CCS, 2016.
  16. D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote Software-Induced Fault Attack in Javascript,” in DIMVA, 2016.
  17. K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip Feng Shui: Hammering a Needle in the Software Stack,” in USENIX Security, 2016.
  18. P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,” in USENIX Security, 2016.
  19. Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation,” in USENIX Security, 2016.
  20. E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina: Memory Deduplication as An Advanced Exploitation Vector,” in S&P, 2016.
  21. S. Bhattacharya and D. Mukhopadhyay, “Curious Case of RowHammer: Flipping Secret Exponent Bits using Timing Analysis,” in CHES, 2016.
  22. W. Burleson, O. Mutlu, and M. Tiwari, “Invited: Who is the Major Threat to Tomorrow’s Security? You, the Hardware Designer,” in DAC, 2016.
  23. R. Qiao et al., “A New Approach for RowHammer Attacks,” in HOST, 2016.
  24. F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Can’t Touch This: Software-Only Mitigation Against Rowhammer Attacks Targeting Kernel Memory,” in USENIX Security, 2017.
  25. Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the Processor via Rowhammer Attack,” in SysTEX, 2017.
  26. M. T. Aga, Z. B. Aweke, and T. Austin, “When Good Protections Go Bad: Exploiting Anti-DoS Measures to Accelerate Rowhammer Attacks,” in HOST, 2017.
  27. O. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” in DATE, 2017.
  28. A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating Software Mitigations Against Rowhammer: A Surgical Precision Hammer,” in RAID, 2018.
  29. D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl, and Y. Yarom, “Another Flip in the Wall of Rowhammer Defenses,” in S&P, 2018.
  30. M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, and L. Lamster, “Nethammer: Inducing Rowhammer Faults Through Network Requests,” arXiv:1805.04956, 2018.
  31. V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna, C. Kruegel, H. Bos, and K. Razavi, “GuardION: Practical Mitigation of DMA-Based Rowhammer Attacks on ARM,” in DIMVA, 2018.
  32. P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU,” in S&P, 2018.
  33. L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks,” in S&P, 2019.
  34. S. Ji, Y. Ko, S. Oh, and J. Kim, “Pinpoint Rowhammer: Suppressing Unwanted Bit Flips on Rowhammer Attacks,” in ASIACCS, 2019.
  35. O. Mutlu, “RowHammer and Beyond,” in COSADE, 2019.
  36. S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, “Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware Fault Attacks,” in USENIX Security, 2019.
  37. A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading Bits in Memory Without Accessing Them,” in S&P, 2020.
  38. P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida, H. Bos, and K. Razavi, “TRRespass: Exploiting the Many Sides of Target Row Refresh,” in S&P, 2020.
  39. L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and O. Mutlu, “Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers,” in S&P, 2020.
  40. Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and B. Sunar, “JackHammer: Efficient Rowhammer on Heterogeneous FPGA–CPU Platforms,” arXiv:1912.11523, 2020.
  41. Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom, “PTHammer: Cross-User-Kernel-Boundary Rowhammer Through Implicit Accesses,” in MICRO, 2020.
  42. F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the Intelligence of Deep Neural Networks Through Targeted Chain of Bit Flips,” in USENIX Security, 2020.
  43. F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and K. Razavi, “SMASH: Synchronized Many-Sided Rowhammer Attacks from JavaScript,” in USENIX Security, 2021.
  44. H. Hassan, Y. C. Tugrul, J. S. Kim, V. van der Veen, K. Razavi, and O. Mutlu, “Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications,” in MICRO, 2021.
  45. P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “Blacksmith: Scalable Rowhammering in the Frequency Domain,” in S&P, 2022.
  46. M. C. Tol, S. Islam, B. Sunar, and Z. Zhang, “Toward Realistic Backdoor Injection Attacks on DNNs using RowHammer,” arXiv:2110.07683, 2022.
  47. A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu, M. Nissler, and D. Gruss, “Half-Double: Hammering From the Next Row Over,” in USENIX Security, 2022.
  48. L. Orosa, U. Rührmair, A. G. Yaglikci, H. Luo, A. Olgun, P. Jattke, M. Patel, J. Kim, K. Razavi, and O. Mutlu, “SpyHammer: Using RowHammer to Remotely Spy on Temperature,” arXiv:2210.04084, 2022.
  49. Z. Zhang, W. He, Y. Cheng, W. Wang, Y. Gao, D. Liu, K. Li, S. Nepal, A. Fu, and Y. Zou, “Implicit Hammer: Cross-Privilege-Boundary Rowhammer through Implicit Accesses,” IEEE TDSC, 2022.
  50. L. Liu, Y. Guo, Y. Cheng, Y. Zhang, and J. Yang, “Generating Robust DNN with Resistance to Bit-Flip based Adversarial Weight Attack,” IEEE TC, 2022.
  51. Y. Cohen, K. S. Tharayil, A. Haenel, D. Genkin, A. D. Keromytis, Y. Oren, and Y. Yarom, “HammerScope: Observing DRAM Power Consumption Using Rowhammer,” in CCS, 2022.
  52. M. Zheng, Q. Lou, and L. Jiang, “TrojViT: Trojan Insertion in Vision Transformers,” arXiv:2208.13049, 2022.
  53. M. Fahr Jr, H. Kippen, A. Kwong, T. Dang, J. Lichtinger, D. Dachman-Soled, D. Genkin, A. Nelson, R. Perlner, A. Yerukhimovich et al., “When Frodo Flips: End-to-End Key Recovery on FrodoKEM via Rowhammer,” CCS, 2022.
  54. Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “SpecHammer: Combining Spectre and Rowhammer for New Speculative Attacks,” in S&P, 2022.
  55. A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories,” in S&P, 2022.
  56. H. Aydin and A. Sertbaş, “Cyber Security in Industrial Control Systems (ICS): A Survey of RowHammer Vulnerability,” Applied Computer Science, 2022.
  57. K. Mus, Y. Doröz, M. C. Tol, K. Rahman, and B. Sunar, “Jolt: Recovering TLS Signing Keys via Rowhammer Faults,” Cryptology ePrint Archive, 2022.
  58. J. Wang, H. Xu, C. Xiao, L. Zhang, and Y. Zheng, “Research and Implementation of Rowhammer Attack Method based on Domestic NeoKylin Operating System,” in ICFTIC, 2022.
  59. S. Lefforge, “Reverse Engineering Post-Quantum Cryptography Schemes to Find Rowhammer Exploits,” Bachelor’s Thesis, University of Arkansas, 2023.
  60. M. J. Fahr, “The Effects of Side-Channel Attacks on Post-Quantum Cryptography: Influencing FrodoKEM Key Generation Using the Rowhammer Exploit,” Master’s thesis, University of Arkansas, 2022.
  61. A. Kaur, P. Srivastav, and B. Ghoshal, “Work-in-Progress: DRAM-MaUT: DRAM Address Mapping Unveiling Tool for ARM Devices,” in CASES, 2022.
  62. K. Cai, Z. Zhang, and F. Yao, “On the Feasibility of Training-time Trojan Attacks through Hardware-based Faults in Memory,” in HOST, 2022.
  63. D. Li, D. Liu, Y. Ren, Z. Wang, Y. Sun, Z. Guan, Q. Wu, and J. Liu, “CyberRadar: A PUF-based Detecting and Mapping Framework for Physical Devices,” arXiv:2201.07597, 2022.
  64. A. Roohi and S. Angizi, “Efficient Targeted Bit-Flip Attack Against the Local Binary Pattern Network,” in HOST, 2022.
  65. F. Staudigl, H. Al Indari, D. Schön, D. Sisejkovic, F. Merchant, J. M. Joseph, V. Rana, S. Menzel, and R. Leupers, “NeuroHammer: Inducing Bit-Flips in Memristive Crossbar Memories,” in DATE, 2022.
  66. L.-H. Yang, S.-S. Huang, T.-L. Cheng, Y.-C. Kuo, and J.-J. Kuo, “Socially-Aware Collaborative Defense System against Bit-Flip Attack in Social Internet of Things and Its Online Assignment Optimization,” in ICCCN, 2022.
  67. S. Islam, K. Mus, R. Singh, P. Schaumont, and B. Sunar, “Signature Correction Attack on Dilithium Signature Scheme,” in Euro S&P, 2022.
  68. J. S. Kim, M. Patel, A. G. Yağlıkcı, H. Hassan, R. Azizi, L. Orosa, and O. Mutlu, “Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques,” in ISCA, 2020.
  69. A. G. Yağlıkcı, H. Luo, G. F. De Oliviera, A. Olgun, M. Patel, J. Park, H. Hassan, J. S. Kim, L. Orosa, and O. Mutlu, “Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices,” in DSN, 2022.
  70. L. Orosa, A. G. Yağlıkcı, H. Luo, A. Olgun, J. Park, H. Hassan, M. Patel, J. S. Kim, and O. Mutlu, “A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses,” in MICRO, 2021.
  71. O. Mutlu, “RowHammer,” https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-TopPicksinHardwareEmbeddedSecurity-November-8-2018.pdf, 2018, Top Picks in Hardware and Embedded Security.
  72. A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in ISPASS, 2009.
  73. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Computing,” in IISWC, 2009.
  74. N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil, S. Subramanian, A. Swing, B. Towles, C. Young, X. Zhou, Z. Zhou, and D. A. Patterson, “TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings,” in ISCA, 2023.
  75. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language Models are Few-Shot Learners,” in NIPS, 2020.
  76. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” in NAACL, 2019.
  77. NVIDIA, “NVIDIA A100 Tensor Core GPU Architecture,” Whitepaper, 2020.
  78. NVIDIA, “NVIDIA H100 Tensor Core GPU Architecture,” Whitepaper, 2022.
  79. N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young, and D. Patterson, “A Domain-Specific Supercomputer for Training Deep Neural Networks,” Communications of the ACM, 2020.
  80. AMD, “Introducing AMD CDNA Architecture,” Whitepaper, 2020.
  81. AMD, “Introducing AMD CDNA™ 2 Architecture,” Whitepaper, 2021.
  82. SAFARI Research Group, “HBM Read Disturbance — GitHub Repository,” https://github.com/CMU-SAFARI/HBM-Read-Disturbance, 2024.
  83. J. M. O’Connor, “Energy Efficient High Bandwidth DRAM for Throughput Processors,” Ph.D. dissertation, UT Austin, 2021.
  84. Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A Case for Subarray-Level Parallelism (SALP) in DRAM,” in ISCA, 2012.
  85. V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. Mowry, “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization,” in MICRO, 2013.
  86. K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim, and O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” in HPCA, 2014.
  87. A. Olgun, H. Hassan, A. G. Yağlıkcı, Y. C. Tuğrul, L. Orosa, H. Luo, M. Patel, E. Oğuz, and O. Mutlu, “DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure to Easily Test State-of-the-art DRAM Chips,” TCAD, 2023.
  88. SAFARI Research Group, “DRAM Bender — GitHub Repository,” https://github.com/CMU-SAFARI/DRAM-Bender, 2022.
  89. “Bittware XUPVVH FPGA Board,” https://www.bittware.com/fpga/xup-vvh/.
  90. Xilinx Inc., “Xilinx Alveo U50 FPGA Board,” https://www.xilinx.com/products/boards-and-kits/alveo/u50.html.
  91. “Arduino MEGA Documentation,” https://docs.arduino.cc/hardware/mega-2560/.
  92. J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, O. Mutlu, J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” in ISCA, 2013.
  93. M. Patel, J. S. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” in ISCA, 2017.
  94. R. T. Smith, J. D. Chlipala, J. F. Bindels, R. G. Nelson, F. H. Fischer, and T. F. Mantz, “Laser Programmable Redundancy and Yield Improvement in a 64K DRAM,” JSSC, 1981.
  95. M. Horiguchi, “Redundancy Techniques for High-Density DRAMs,” in ISIS, 1997.
  96. V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.
  97. S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM,” in DSN, 2016.
  98. S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” in MICRO, 2017.
  99. D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko, V. Seshadri, and O. Mutlu, “Design-induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” POMACS, 2017.
  100. M. Patel, J. Kim, T. Shahroodi, H. Hassan, and O. Mutlu, “Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics,” in MICRO, 2020.
  101. A. G. Yağlıkcı, M. Patel, J. S. Kim, R. Azizibarzoki, A. Olgun, L. Orosa, H. Hassan, J. Park, K. Kanellopoullos, T. Shahroodi, S. Ghose, and O. Mutlu, “BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows,” in HPCA, 2021.
  102. A. van de Goor and I. Schanstra, “Address and Data Scrambling: Causes and Impact on Memory Tests,” in DELTA, 2002.
  103. A. G. Yağlıkçı, G. F. Oliveira, Y. C. Tuğrul, I. E. Yuksel, A. Olgun, H. Luo, and O. Mutlu, “Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions,” in HPCA, 2024.
  104. AMD Xilinx, “AMD Xilinx Support Website,” https://support.xilinx.com/s/question/0D54U00007iVe9ESAS/where-can-we-find-the-dram-timing-parameters-for-the-hbm2-stacks-in-alveo-u50?language=en_US, 2024.
  105. A. Farmahini-Farahani, S. Gurumurthi, G. Loh, and M. Ignatowski, “Challenges of High-Capacity DRAM Stacks and Potential Directions,” in Workshop on Memory Centric High Performance Computing, 2018.
  106. K. Park, D. Yun, and S. Baeg, “Statistical Distributions of Row-hammering Induced Failures in DDR3 Components,” Microelectronics Reliability, 2016.
  107. K. Park, C. Lim, D. Yun, and S. Baeg, “Experiments and Root Cause Analysis for Active-precharge Hammering Fault in DDR3 SDRAM under 3×\times× nm Technology,” Microelectronics Reliability, 2016.
  108. H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “HBM (High Bandwidth Memory) DRAM Technology and Architecture,” in (IMW), 2017.
  109. H. Nam, S. Baek, M. Wi, M. J. Kim, J. Park, C. Song, N. S. Kim, and J. H. Ahn, “X-ray: Discovering DRAM Internal Structure and Error Characteristics by Issuing Memory Commands,” IEEE CAL, 2023.
  110. S. M. Kim, B. Song, and S.-O. Jung, “Imbalance-Tolerant Bit-Line Sense Amplifier for Dummy-Less Open Bit-Line Scheme in DRAM,” IEEE Transactions on Circuits and Systems I: Regular Papers, 2021.
  111. A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of GPU Memory System for Multi-Application Execution,” in MEMSYS, 2015.
  112. B. S. Nordquist and S. D. Lew, “Apparatus, System, and Method for Coalescing Parallel Memory Requests,” 2009, U.S. Patent 7,492,368.
  113. A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “Exploiting Core Criticality for Enhanced GPU Performance,” in SIGMETRICS, 2016.
  114. R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and O. Mutlu, “Staged Memory Scheduling: Achieving High Performance and Scalability in Heterogeneous Systems,” in ISCA, 2012.
  115. NVIDIA, “NVIDIA Tesla P100,” https://www.nvidia.com/en-us/data-center/resources/pascal-architecture-whitepaper, 2016.
  116. S. Gurumurthi, K. Lee, M. Jang, V. Sridharan, A. Nygren, Y. Ryu, K. Sohn, T. Kim, and H. Chung, “HBM3 RAS: Enhancing Resilience at Scale,” IEEE CAL, 2021.
  117. R. Krashinsky, O. Giroux, S. Jones, N. Stam, and S. Ramaswamy, “NVIDIA Ampere Architecture In-Depth,” https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/, 2020.
  118. AMD, “BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors,” Developer’s Guide, 2013.
  119. R. Yeleswarapu and A. K. Somani, “Addressing Multiple Bit/Symbol Errors in DRAM Subsystem,” arXiv:1908.01806, 2020.
  120. C. Chen, “Symbol Error Correcting Codes for Memory Applications,” in FTCS, 1996.
  121. R. W. Hamming, “Error Detecting and Error Correcting Codes,” The Bell system technical journal, 1950.
  122. NVIDIA, “Dynamic Page Retirement,” https://docs.nvidia.com/deploy/pdf/Dynamic_Page_Retirement.pdf, 2019.
  123. Apple Inc., “About the Security Content of Mac EFI Security Update 2015-001,” https://support.apple.com/en-us/HT204934, 2015.
  124. Hewlett-Packard Enterprise, “HP Moonshot Component Pack Version 2015.05.0,” http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/component-pack/index.aspx, 2015.
  125. Lenovo, “Row Hammer Privilege Escalation,” https://support.lenovo.com/us/en/product_security/row_hammer, 2015.
  126. Z. Greenfield and T. Levy, “Throttling Support for Row-Hammer Counters,” 2016, U.S. Patent 9,251,885.
  127. D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural Support for Mitigating Row Hammering in DRAM Memories,” IEEE CAL, 2014.
  128. K. S. Bains and J. B. Halbert, “Distributed Row Hammer Tracking,” US Patent: 9,299,400, 2016.
  129. K. Bains et al., “Method, Apparatus and System for Providing a Memory Refresh,” US Patent: 9,030,903, 2015.
  130. Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin, “ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks,” in ASPLOS, 2016.
  131. K. Bains et al., “Row Hammer Refresh Command,” US Patents: 9,117,544 9,236,110 10,210,925, 2015.
  132. M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM Stronger Against Row Hammering,” in DAC, 2017.
  133. S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating Wordline Crosstalk Using Adaptive Trees of Counters,” in ISCA, 2018.
  134. G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Stopping Microarchitectural Attacks Before Execution,” IACR Cryptology, 2016.
  135. J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.
  136. E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.
  137. Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee, “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020.
  138. A. G. Yağlıkcı, J. S. Kim, F. Devaux, and O. Mutlu, “Security Analysis of the Silver Bullet Technique for RowHammer Prevention,” arXiv:2106.07084, 2021.
  139. I. Kang, E. Lee, and J. H. Ahn, “CAT-TWO: Counter-Based Adaptive Tree, Time Window Optimized for DRAM Row-Hammer Prevention,” IEEE Access, 2020.
  140. M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: Enabling Low-Overhead Mitigation of Row-Hammer at Ultra-Low Thresholds via Hybrid Tracking,” in ISCA, 2022.
  141. G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Randomized Row-Swap: Mitigating Row Hammer by Breaking Spatial Correlation Between Aggressor and Victim Rows,” in ASPLOS, 2022.
  142. R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida, and K. Razavi, “ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks,” in OSDI, 2018.
  143. S. Vig, S. Bhattacharya, D. Mukhopadhyay, and S.-K. Lam, “Rapid Detection of Rowhammer Attacks Using Dynamic Skewed Hash Tree,” in HASP, 2018.
  144. M. J. Kim, J. Park, Y. Park, W. Doh, N. Kim, T. J. Ham, J. W. Lee, and J. H. Ahn, “Mithril: Cooperative Row Hammer Protection on Commodity DRAM Leveraging Managed Refresh,” in HPCA, 2022.
  145. G.-H. Lee, S. Na, I. Byun, D. Min, and J. Kim, “CryoGuard: A Near Refresh-Free Robust DRAM Design for Cryogenic Computing,” in ISCA, 2021.
  146. M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “REGA: Scalable Rowhammer Mitigation with Refresh-Generating Activations,” in S&P, 2022.
  147. Z. Zhang, Y. Cheng, M. Wang, W. He, W. Wang, S. Nepal, Y. Gao, K. Li, Z. Wang, and C. Wu, “SoftTRR: Protect Page Tables against Rowhammer Attacks using Software-only Target Row Refresh,” in USENIX ATC, 2022.
  148. B. K. Joardar, T. K. Bletsch, and K. Chakrabarty, “Learning to Mitigate RowHammer Attacks,” in DATE, 2022.
  149. J. Juffinger, L. Lamster, A. Kogler, M. Eichlseder, M. Lipp, and D. Gruss, “CSI: Rowhammer–Cryptographic Security and Integrity against Rowhammer (to appear),” in S&P, 2023.
  150. A. G. Yağlikci, A. Olgun, M. Patel, H. Luo, H. Hassan, L. Orosa, O. Ergin, and O. Mutlu, “HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-Shelf DRAM Chips,” in MICRO, 2022.
  151. A. Saxena, G. Saileshwar, P. J. Nair, and M. Qureshi, “AQUA: Scalable Rowhammer Mitigation by Quarantining Aggressor Rows at Runtime,” in MICRO, 2022.
  152. S. Enomoto, H. Kuzuno, and H. Yamada, “Efficient Protection Mechanism for CPU Cache Flush Instruction Based Attacks,” IEICE Transactions on Information and Systems, 2022.
  153. E. Manzhosov, A. Hastings, M. Pancholi, R. Piersma, M. T. I. Ziad, and S. Sethumadhavan, “Revisiting Residue Codes for Modern Memories,” in MICRO, 2022.
  154. S. M. Ajorpaz, D. Moghimi, J. N. Collins, G. Pokam, N. Abu-Ghazaleh, and D. Tullsen, “EVAX: Towards a Practical, Pro-active & Adaptive Architecture for High Performance & Security,” in MICRO, 2022.
  155. A. Naseredini, M. Berger, M. Sammartino, and S. Xiong, “ALARM: Active LeArning of Rowhammer Mitigations,” https://users.sussex.ac.uk/~mfb21/rh-draft.pdf, 2022.
  156. B. K. Joardar, T. K. Bletsch, and K. Chakrabarty, “Machine Learning-based Rowhammer Mitigation,” TCAD, 2022.
  157. H. Hassan, A. Olgun, A. G. Yaglikci, H. Luo, and O. Mutlu, “A Case for Self-Managing DRAM Chips: Improving Performance, Efficiency, Reliability, and Security via Autonomous in-DRAM Maintenance Operations,” arXiv:2207.13358, 2022.
  158. Z. Zhang, Z. Zhan, D. Balasubramanian, B. Li, P. Volgyesi, and X. Koutsoukos, “Leveraging EM Side-Channel Information to Detect Rowhammer Attacks,” in S&P, 2020.
  159. K. Loughlin, S. Saroiu, A. Wolman, and B. Kasikci, “Stop! Hammer Time: Rethinking Our Approach to Rowhammer Mitigations,” in HotOS, 2021.
  160. F. Devaux and R. Ayrignac, “Method and Circuit for Protecting a DRAM Memory Device from the Row Hammer Effect,” US Patent: 10,885,966, 2021.
  161. J.-W. Han, J. Kim, D. Beery, K. D. Bozdag, P. Cuevas, A. Levi, I. Tain, K. Tran, A. J. Walker, S. V. Palayam, A. Arreghini, A. Furnémont, and M. Meyyappan, “Surround Gate Transistor With Epitaxially Grown Si Pillar and Simulation Study on Soft Error and Rowhammer Tolerance for DRAM,” IEEE TED, 2021.
  162. A. Fakhrzadehgan, Y. N. Patt, P. J. Nair, and M. K. Qureshi, “SafeGuard: Reducing the Security Risk from Row-Hammer via Low-Cost Integrity Protection,” in HPCA, 2022.
  163. S. Saroiu, A. Wolman, and L. Cojocar, “The Price of Secrecy: How Hiding Internal DRAM Topologies Hurts Rowhammer Defenses,” in IRPS, 2022.
  164. S. Saroiu and A. Wolman, “How to Configure Row-Sampling-Based Rowhammer Defenses,” DRAMSec, 2022.
  165. K. Loughlin, S. Saroiu, A. Wolman, Y. A. Manerkar, and B. Kasikci, “MOESI-Prime: Preventing Coherence-Induced Hammering in Commodity Workloads,” in ISCA, 2022.
  166. R. Zhou, S. Tabrizchi, A. Roohi, and S. Angizi, “LT-PIM: An LUT-Based Processing-in-DRAM Architecture With RowHammer Self-Tracking,” IEEE CAL, 2022.
  167. S. Hong, D. Kim, J. Lee, R. Oh, C. Yoo, S. Hwang, and J. Lee, “DSAC: Low-Cost Rowhammer Mitigation Using In-DRAM Stochastic and Approximate Counting Algorithm,” arXiv:2302.03591, 2023.
  168. M. Marazzi, F. Solt, P. Jattke, K. Takashi, and K. Razavi, “ProTRR: Principled yet Optimal In-DRAM Target Row Refresh,” in S&P, 2023.
  169. A. Di Dio, K. Koning, H. Bos, and C. Giuffrida, “Copy-on-Flip: Hardening ECC Memory Against Rowhammer Attacks,” in NDSS, 2023.
  170. S. Sharma, D. Sanyal, A. Mukhopadhyay, and R. H. Shaik, “A Review on Study of Defects of DRAM-RowHammer and Its Mitigation,” Journal For Basic Sciences, 2022.
  171. J. Woo, G. Saileshwar, and P. J. Nair, “Scalable and Secure Row-Swap: Efficient and Safe Row Hammer Mitigation in Memory Systems,” in HPCA, 2023.
  172. J. H. Park, S. Y. Kim, D. Y. Kim, G. Kim, J. W. Park, S. Yoo, Y.-W. Lee, and M. J. Lee, “RowHammer Reduction Using a Buried Insulator in a Buried Channel Array Transistor,” IEEE Transactions on Electron Devices, 2022.
  173. M. Wi, J. Park, S. Ko, M. J. Kim, N. S. Kim, E. Lee, and J. H. Ahn, “SHADOW: Preventing Row Hammer in DRAM with Intra-Subarray Row Shuffling,” in HPCA.   IEEE, 2023.
  174. W. Kim, C. Jung, S. Yoo, D. Hong, J. Hwang, J. Yoon, O. Jung, J. Choi, S. Hyun, M. Kang et al., “A 1.1 V 16Gb DDR5 DRAM with Probabilistic-Aggressor Tracking, Refresh-Management Functionality, Per-Row Hammer Tracking, a Multi-Step Precharge, and Core-Bias Modulation for Security and Reliability Enhancement,” in ISSCC.   IEEE, 2023.
  175. C. Gude Ramarao, K. T. Kumar, G. Ujjinappa, and B. V. D. Naidu, “Defending SoCs with FPGAs from Rowhammer Attacks,” Material Science, 2023.
  176. K. Guha and A. Chakrabarti, “Criticality based Reliability from Rowhammer Attacks in Multi-User-Multi-FPGA Platform,” in VLSID.   IEEE, 2022.
  177. L. France, F. Bruguier, M. Mushtaq, D. Novo, and P. Benoit, “Modeling Rowhammer in the gem5 Simulator,” in CHES 2022-Conference on Cryptographic Hardware and Embedded Systems, 2022.
  178. L. France, F. Bruguier, D. Novo, M. Mushtaq, and P. Benoit, “Reducing the Silicon Area Overhead of Counter-Based Rowhammer Mitigations,” in 18th CryptArchi Workshop, 2022.
  179. T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, “Panopticon: A Complete In-DRAM Rowhammer Mitigation,” in DRAMSec, 2021.
  180. K. Arıkan, A. Palumbo, L. Cassano, P. Reviriego, S. Pontarelli, G. Bianchi, O. Ergin, and M. Ottavi, “Processor security: Detecting microarchitectural attacks via count-min sketches,” VLSI, 2022.
  181. C. Tomita, M. Takita, K. Fukushima, Y. Nakano, Y. Shiraishi, and M. Morii, “Extracting the secrets of openssl with rambleed,” Sensors, 2022.
  182. A. Saxena, G. Saileshwar, J. Juffinger, A. Kogler, D. Gruss, and M. Qureshi, “PT-Guard: Integrity-Protected Page Tables to Defend Against Breakthrough Rowhammer Attacks,” in DSN, 2023.
  183. R. Zhou, S. Ahmed, A. S. Rakin, and S. Angizi, “DNN-Defender: An in-DRAM Deep Neural Network Defense Mechanism for Adversarial Weight Attack,” arXiv:2305.08034, 2023.
  184. S. C. Woo, W. Elsasser, M. Hamburg, E. Linstadt, M. R. Miller, T. Song, and J. Tringali, “RAMPART: RowHammer Mitigation and Repair for Server Memory Systems,” in MEMSYS, 2023.
  185. M. J. Kim, M. Wi, J. Park, S. Ko, J. Choi, H. Nam, N. S. Kim, J. H. Ahn, and E. Lee, “How to Kill the Second Bird with One ECC: The Pursuit of Row Hammer Resilient DRAM,” in MICRO, 2023.
  186. A. Olgun, M. Osseiran, A. G. Yaglikci, Y. C. Tugrul, H. Luo, S. Rhyner, B. Salami, J. Gomez Luna, and O. Mutlu, “An Experimental Analysis of RowHammer in HBM2 DRAM Chips,” in DSN Disrupt, 2023.
  187. C. Lim, K. Park, and S. Baeg, “Active Precharge Hammering to Monitor Displacement Damage Using High-Energy Protons in 3x-nm SDRAM,” TNS, 2017.
  188. S.-W. Ryu, K. Min, J. Shin, H. Kwon, D. Nam, T. Oh, T.-S. Jang, M. Yoo, Y. Kim, and S. Hong, “Overcoming the Reliability Limitation in the Ultimately Scaled DRAM using Silicon Migration Technique by Hydrogen Annealing,” in IEDM, 2017.
  189. D. Yun, M. Park, C. Lim, and S. Baeg, “Study of TID Effects on One Row Hammering using Gamma in DDR4 SDRAMs,” in IRPS, 2018.
  190. C. Lim, K. Park, G. Bak, D. Yun, M. Park, S. Baeg, S.-J. Wen, and R. Wong, “Study of Proton Radiation Effect to Row Hammer Fault in DDR4 SDRAMs,” Microelectronics Reliability, 2018.
  191. Z. Lang, P. Jattke, M. Marazzi, and K. Razavi, “BLASTER: Characterizing the Blast Radius of Rowhammer,” in DRAMSec, 2023.
  192. S. S. Nabavi Larimi, B. Salami, O. S. Unsal, A. C. Kestelman, H. Sarbazi-Azad, and O. Mutlu, “Understanding Power Consumption and Reliability of High-Bandwidth Memory with Voltage Underscaling,” in DATE, 2021.
  193. J. Kwon, S.-J. Wen, R. Fung, and S. Baeg, “Temperature Estimation of HBM2 Channels with Tail Distribution of Retention Errors in FPGA-HBM2 Platform,” Electronics, 2023.
  194. M. B. Sullivan, N. Saxena, M. O’Connor, D. Lee, P. Racunas, S. Hukerikar, T. Tsai, S. K. S. Hari, and S. W. Keckler, “Characterizing And Mitigating Soft Errors in GPU DRAM,” in MICRO, 2021.
Citations (3)

Summary

We haven't generated a summary for this paper yet.