Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Quantum transport signature of strain-induced scalar and pseudo-vector potentials in a crenellated hBN-graphene heterostructure (2402.18253v1)

Published 28 Feb 2024 in cond-mat.mes-hall

Abstract: The sharp Dirac cone of the electronic dispersion confers to graphene a remarkable sensitivity to strain. It is usually encoded in scalar and pseudo-vector potentials, induced by the modification of hopping parameters, which have given rise to new phenomena at the nanoscale such as giant pseudomagnetic fields and valley polarization. Here, we unveil the effect of these potentials on the quantum transport across a succession of strain-induced barriers. We use high-mobility, hBN-encapsulated graphene, transferred over a large (10x10 $\mu$m${2}$) crenellated hBN substrate. We show the emergence of a broad resistance ancillary peak at positive energy that arises from Klein tunneling barriers induced by the tensile strain at the trench edges. Our theoretical study, in quantitative agreement with experiment, highlights the balanced contributions of strain-induced scalar and pseudo-vector potentials on ballistic transport. Our results establish crenellated van der Waals heterostructures as a promising platform for strain engineering in view of applications and basic physics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. D. Zhai and N. Sandler, Electron dynamics in strained graphene, Modern Physics Letters B 33, 1930001 (2019a).
  2. A. McRae, G. Wei, and A. Champagne, Graphene quantum strain transistors, Physical Review Applied 11, 054019 (2019).
  3. A. R. Botello-Méndez, J. C. Obeso-Jureidini, and G. G. Naumis, Toward an accurate tight-binding model of graphene’s electronic properties under strain, The Journal of Physical Chemistry C 122, 15753 (2018).
  4. V. M. Pereira, A. C. Neto, and N. Peres, Tight-binding approach to uniaxial strain in graphene, Physical Review B 80, 045401 (2009).
  5. V. M. Pereira and A. C. Neto, Strain engineering of graphene’s electronic structure, Physical Review Letters 103, 046801 (2009).
  6. F. Guinea, M. I. Katsnelson, and M. A. H. Vozmediano, Midgap states and charge inhomogeneities in corrugated graphene, Phys. Rev. B 77, 075422 (2008).
  7. B. Uchoa and Y. Barlas, Superconducting states in pseudo-landau-levels of strained graphene, Physical Review Letters 111, 046604 (2013).
  8. A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology 8, 235 (2013).
  9. A. F. Young and P. Kim, Quantum interference and klein tunnelling in graphene heterojunctions, Nature Physics 5, 222 (2009).
  10. J. L. Manes, Symmetry-based approach to electron-phonon interactions in graphene, Physical Review B 76, 045430 (2007).
  11. H. Suzuura and T. Ando, Phonons and electron-phonon scattering in carbon nanotubes, Physical Review B 65, 235412 (2002).
  12. S.-M. Choi, S.-H. Jhi, and Y.-W. Son, Effects of strain on electronic properties of graphene, Physical Review B 81, 081407 (2010).
  13. M. Fogler, F. Guinea, and M. Katsnelson, Pseudomagnetic fields and ballistic transport in a suspended graphene sheet, Physical Review Letters 101, 226804 (2008).
  14. Z.-Z. Cao, Y.-F. Cheng, and G.-Q. Li, Strain-controlled electron switch in graphene, Applied Physics Letters 101, 253507 (2012).
  15. D. Zhai and N. Sandler, Electron dynamics in strained graphene, Modern Physics Letters B 33, 1930001 (2019b).
  16. N. W. Ashcroft and N. David, Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).
  17. H. Yu, A. Kutana, and B. I. Yakobson, Electron optics and valley hall effect of undulated graphene, Nano Letters 22, 2934–2940 (2022).
  18. D. Dragoman and M. Dragoman, Quantum-classical analogies (Springer Science & Business Media, 2004).
  19. D. Dragoman and M. Dragoman, Optical analogue structures to mesoscopic devices, Progress in quantum electronics 23, 131 (1999).
  20. M. A. Vozmediano, M. Katsnelson, and F. Guinea, Gauge fields in graphene, Physics Reports 496, 109 (2010).
  21. P. E. Allain and J.-N. Fuchs, Klein tunneling in graphene: optics with massless electrons, The European Physical Journal B 83, 301 (2011).
  22. C. Si, Z. Sun, and F. Liu, Strain engineering of graphene: a review, Nanoscale 8, 3207 (2016).
  23. M. O.-L. Xerardo G Naumis, Salvador Barraza-Lopez and H. Terrones, Electronic and optical properties of strained graphene and other strained 2d materials: a review, Rep. Prog. Phys. 80, 096501 (2017).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com