Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gate-Aware Online Planning for Two-Player Autonomous Drone Racing (2402.18021v2)

Published 28 Feb 2024 in cs.RO

Abstract: The flying speed of autonomous quadrotors has increased significantly over the past 5 years, particularly in the field of autonomous drone racing. However, most research primarily focuses on the aggressive flight of a single quadrotor, simplifying the racing gate traversal problem to a waypoint passing problem that neglects the orientations of the racing gates. In this paper, we propose a systematic method called Pairwise Model Predictive Control (PMPC) that can guide two quadrotors online to navigate racing gates with minimal time and without collisions. The flight task is initially simplified as a point-mass model waypoint passing problem to provide analytical time optimal reference through an efficient two-step velocity search method. Subsequently, we utilize the spatial configuration of the racing track to compute the optimal heading at each gate, maximizing the visibility of subsequent gates for the quadrotors. To address varying gate orientations, we introduce a novel Magnetic Induction Line-based spatial curve to guide the quadrotors through racing gates of different orientations. Furthermore, we formulate a nonlinear optimization problem that uses the point-mass trajectory as initial values and references to enhance solving efficiency, enabling the method to run onboard at a frequency of 200 Hz. The feasibility of the proposed method is validated through both simulation and real-world experiments. In real-world tests, the two quadrotors achieved a top speed of 6.1 m/s on a 7-waypoint racing track within a compact flying arena of 5 m * 4 m * 2 m.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga, A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter, et al., “Challenges and implemented technologies used in autonomous drone racing,” Intelligent Service Robotics, pp. 1–12, 2019.
  2. S. Li, M. M. Ozo, C. De Wagter, and G. C. de Croon, “Autonomous drone race: A computationally efficient vision-based navigation and control strategy,” Robotics and Autonomous Systems, vol. 133, p. 103621, 2020.
  3. S. Li, E. van der Horst, P. Duernay, C. De Wagter, and G. C. de Croon, “Visual model-predictive localization for computationally efficient autonomous racing of a 72-g drone,” Journal of Field Robotics, vol. 37, no. 4, pp. 667–692, 2020.
  4. C. De Wagter, F. Paredes-Vallés, N. Sheth, and G. de Croon, “The artificial intelligence behind the winning entry to the 2019 ai robotic racing competition,” arXiv preprint arXiv:2109.14985, 2021.
  5. P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, p. eabh1221, 2021.
  6. E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scaramuzza, “Champion-level drone racing using deep reinforcement learning,” Nature, vol. 620, no. 7976, pp. 982–987, 2023.
  7. D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525, IEEE, 2011.
  8. M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 620–626, 2017.
  9. X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “Ego-swarm: A fully autonomous and decentralized quadrotor swarm system in cluttered environments,” in 2021 IEEE international conference on robotics and automation (ICRA), pp. 4101–4107, IEEE, 2021.
  10. Q. Wang, D. Wang, C. Xu, A. Gao, and F. Gao, “Polynomial-based online planning for autonomous drone racing in dynamic environments,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1078–1085, 2023.
  11. A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive contouring control for time-optimal quadrotor flight,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3340–3356, 2022.
  12. S. Li, E. Öztürk, C. De Wagter, G. C. De Croon, and D. Izzo, “Aggressive online control of a quadrotor via deep network representations of optimality principles,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6282–6287, IEEE, 2020.
  13. R. Ferede, G. de Croon, C. De Wagter, and D. Izzo, “End-to-end neural network based optimal quadcopter control,” Robotics and Autonomous Systems, vol. 172, p. 104588, 2024.
  14. J. Zhou, J. Mei, F. Zhao, J. Chen, and S. Li, “Imitation learning-based online time-optimal control with multiple-waypoint constraints for quadrotors,” arXiv e-prints, pp. arXiv–2402, 2024.
  15. Y. Song, A. Romero, M. Müller, V. Koltun, and D. Scaramuzza, “Reaching the limit in autonomous racing: Optimal control versus reinforcement learning,” Science Robotics, vol. 8, no. 82, p. eadg1462, 2023.
  16. L. Quan, L. Yin, T. Zhang, M. Wang, R. Wang, S. Zhong, X. Zhou, Y. Cao, C. Xu, and F. Gao, “Robust and efficient trajectory planning for formation flight in dense environments,” IEEE Transactions on Robotics, vol. 39, no. 6, pp. 4785–4804, 2023.
  17. K. McGuire, C. De Wagter, K. Tuyls, H. Kappen, and G. C. de Croon, “Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment,” Science Robotics, vol. 4, no. 35, p. eaaw9710, 2019.
  18. S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A survey on aerial swarm robotics,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837–855, 2018.
  19. R. Spica, E. Cristofalo, Z. Wang, E. Montijano, and M. Schwager, “A real-time game theoretic planner for autonomous two-player drone racing,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1389–1403, 2020.
  20. J. Di, S. Chen, P. Li, X. Wang, H. Ji, and Y. Kang, “A cooperative-competitive strategy for autonomous multidrone racing,” IEEE Transactions on Industrial Electronics, 2023.
  21. Y. Shen, J. Zhou, D. Xu, F. Zhao, J. Xu, J. Chen, and S. Li, “Aggressive trajectory generation for a swarm of autonomous racing drones,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7436–7441, 2023.
  22. Y. Shen, F. Zhao, J. Mei, J. Zhou, J. Xu, and S. Li, “Time-optimal trajectory generation with input boundaries and dynamic waypoints constraints for a swarm of quadrotors,” in 14t⁢h𝑡ℎ{}^{th}start_FLOATSUPERSCRIPT italic_t italic_h end_FLOATSUPERSCRIPT annual International Micro Air Vehicle Conference and Competition (D. Moormann, ed.), (Aachen, Germany), pp. 247–254, Sep 2023. Paper no. IMAV2023-31.
  23. P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig, M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone racing,” Autonomous Robots, vol. 46, no. 1, pp. 307–320, 2022.

Summary

We haven't generated a summary for this paper yet.