Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Imitation Learning-Based Online Time-Optimal Control with Multiple-Waypoint Constraints for Quadrotors (2402.11570v2)

Published 18 Feb 2024 in cs.RO

Abstract: Over the past decade, there has been a remarkable surge in utilizing quadrotors for various purposes due to their simple structure and aggressive maneuverability, such as search and rescue, delivery and autonomous drone racing, etc. One of the key challenges preventing quadrotors from being widely used in these scenarios is online waypoint-constrained time-optimal trajectory generation and control technique. This letter proposes an imitation learning-based online solution to efficiently navigate the quadrotor through multiple waypoints with time-optimal performance. The neural networks (WN&CNets) are trained to learn the control law from the dataset generated by the time-consuming CPC algorithm and then deployed to generate the optimal control commands online to guide the quadrotors. To address the challenge of limited training data and the hover maneuver at the final waypoint, we propose a transition phase strategy that utilizes MINCO trajectories to help the quadrotor 'jump over' the stop-and-go maneuver when switching waypoints. Our method is demonstrated in both simulation and real-world experiments, achieving a maximum speed of 5.6m/s while navigating through 7 waypoints in a confined space of 5.5m*5.5m*2.0m. The results show that with a slight loss in optimality, the WN&CNets significantly reduce the processing time and enable online optimal control for multiple-waypoint constrained flight tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. D. Hanover, A. Loquercio, L. Bauersfeld, A. Romero, R. Penicka, Y. Song, G. Cioffi, E. Kaufmann, and D. Scaramuzza, “Autonomous drone racing: A survey,” arXiv e-prints, pp. arXiv–2301, 2023.
  2. D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525, IEEE, 2011.
  3. A. Bry, C. Richter, A. Bachrach, and N. Roy, “Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments,” The International Journal of Robotics Research, vol. 34, no. 7, pp. 969–1002, 2015.
  4. M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 620–626, 2017.
  5. P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, p. eabh1221, 2021.
  6. D. J. Webb and J. Van Den Berg, “Kinodynamic rrt*: Asymptotically optimal motion planning for robots with linear dynamics,” in 2013 IEEE international conference on robotics and automation, pp. 5054–5061, IEEE, 2013.
  7. R. Allen and M. Pavone, “A real-time framework for kinodynamic planning with application to quadrotor obstacle avoidance,” in AIAA Guidance, Navigation, and Control Conference, p. 1374, 2016.
  8. S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion planning for aggressive flight in se (3),” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2439–2446, 2018.
  9. Y. Shen, J. Zhou, D. Xu, F. Zhao, J. Xu, J. Chen, and S. Li, “Aggressive trajectory generation for a swarm of autonomous racing drones,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7436–7441, IEEE, 2023.
  10. J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor with reinforcement learning,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2096–2103, 2017.
  11. Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous drone racing with deep reinforcement learning,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1205–1212, 2021.
  12. A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive contouring control for time-optimal quadrotor flight,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3340–3356, 2022.
  13. J. Ji, X. Zhou, C. Xu, and F. Gao, “Cmpcc: Corridor-based model predictive contouring control for aggressive drone flight,” in Experimental Robotics: The 17th International Symposium, pp. 37–46, Springer, 2021.
  14. G. Tang, W. Sun, and K. Hauser, “Learning trajectories for real- time optimal control of quadrotors,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3620–3625, 2018.
  15. D. Izzo and E. Öztürk, “Real-time optimal guidance and control for interplanetary transfers using deep networks,” arXiv preprint arXiv:2002.09063, 2020.
  16. S. Li, E. Öztürk, C. De Wagter, G. C. De Croon, and D. Izzo, “Aggressive online control of a quadrotor via deep network representations of optimality principles,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6282–6287, IEEE, 2020.
  17. O. S. Mulekar, H. Cho, and R. Bevilacqua, “Neural network based feedback optimal control for pinpoint landers under disturbances,” Acta Astronautica, 2023.
  18. S. Origer, C. De Wagter, R. Ferede, G. C. de Croon, and D. Izzo, “Guidance & control networks for time-optimal quadcopter flight,” arXiv preprint arXiv:2305.02705, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com