Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble Methodology:Innovations in Credit Default Prediction Using LightGBM, XGBoost, and LocalEnsemble (2402.17979v1)

Published 28 Feb 2024 in cs.CE, cs.AI, and cs.LG

Abstract: In the realm of consumer lending, accurate credit default prediction stands as a critical element in risk mitigation and lending decision optimization. Extensive research has sought continuous improvement in existing models to enhance customer experiences and ensure the sound economic functioning of lending institutions. This study responds to the evolving landscape of credit default prediction, challenging conventional models and introducing innovative approaches. By building upon foundational research and recent innovations, our work aims to redefine the standards of accuracy in credit default prediction, setting a new benchmark for the industry. To overcome these challenges, we present an Ensemble Methods framework comprising LightGBM, XGBoost, and LocalEnsemble modules, each making unique contributions to amplify diversity and improve generalization. By utilizing distinct feature sets, our methodology directly tackles limitations identified in previous studies, with the overarching goal of establishing a novel standard for credit default prediction accuracy. Our experimental findings validate the effectiveness of the ensemble model on the dataset, signifying substantial contributions to the field. This innovative approach not only addresses existing obstacles but also sets a precedent for advancing the accuracy and robustness of credit default prediction models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Y. Sayjadah, I. A. T. Hashem, F. Alotaibi, and K. A. Kasmiran, “Credit card default prediction using machine learning techniques,” in 2018 Fourth International Conference on Advances in Computing, Communication & Automation (ICACCA).   IEEE, 2018, pp. 1–4.
  2. M. Soui, S. Smiti, S. Bribech, and I. Gasmi, “Credit card default prediction as a classification problem,” in Recent Trends and Future Technology in Applied Intelligence: 31st International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2018, Montreal, QC, Canada, June 25-28, 2018, Proceedings 31.   Springer, 2018, pp. 88–100.
  3. S. Yang and H. Zhang, “Comparison of several data mining methods in credit card default prediction,” Intelligent Information Management, vol. 10, no. 5, pp. 115–122, 2018.
  4. Y. Yu, “The application of machine learning algorithms in credit card default prediction,” in 2020 International Conference on Computing and Data Science (CDS).   IEEE, 2020, pp. 212–218.
  5. T. M. Alam, K. Shaukat, I. A. Hameed, S. Luo, M. U. Sarwar, S. Shabbir, J. Li, and M. Khushi, “An investigation of credit card default prediction in the imbalanced datasets,” IEEE Access, vol. 8, pp. 201 173–201 198, 2020.
  6. Y. Chen and R. Zhang, “Research on credit card default prediction based on k-means smote and bp neural network,” Complexity, vol. 2021, pp. 1–13, 2021.
  7. J. Gao, W. Sun, and X. Sui, “Research on default prediction for credit card users based on xgboost-lstm model,” Discrete Dynamics in Nature and Society, vol. 2021, pp. 1–13, 2021.
  8. Y. Zheng, “A default prediction method using xgboost and lightgbm,” in 2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML).   IEEE, 2022, pp. 210–213.
  9. K. Guo, S. Luo, M. Liang, Z. Zhang, H. Yang, Y. Wang, and Y. Zhou, “Credit default prediction on time-series behavioral data using ensemble models,” in 2023 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2023, pp. 01–09.
  10. Z. Gan, J. Qiu, F. Li, and Q. Liang, “A lightgbm based default prediction method for american express,” in Proceedings of the 2nd International Conference on Information Economy, Data Modeling and Cloud Computing, ICIDC 2023, June 2–4, 2023, Nanchang, China, 2023.
  11. T. G. Dietterich, “Ensemble methods in machine learning,” in International workshop on multiple classifier systems.   Springer, 2000, pp. 1–15.
  12. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” Advances in neural information processing systems, vol. 30, 2017.
  13. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.
  14. T. Miyoshi and S. Yamane, “Local ensemble transform kalman filtering with an agcm at a t159/l48 resolution,” Monthly Weather Review, vol. 135, no. 11, pp. 3841–3861, 2007.
  15. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost: unbiased boosting with categorical features,” Advances in neural information processing systems, vol. 31, 2018.
  16. E. Raffinetti, E. Siletti, and A. Vernizzi, “On the gini coefficient normalization when attributes with negative values are considered,” Statistical Methods & Applications, vol. 24, no. 3, pp. 507–521, 2015.
  17. R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (gru) neural networks,” in 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS).   IEEE, 2017, pp. 1597–1600.
  18. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  19. X. Huang, A. Khetan, M. Cvitkovic, and Z. Karnin, “Tabtransformer: Tabular data modeling using contextual embeddings,” arXiv preprint arXiv:2012.06678, 2020.
Citations (13)

Summary

We haven't generated a summary for this paper yet.