Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Warm-Starting the VQE with Approximate Complex Amplitude Encoding (2402.17378v1)

Published 27 Feb 2024 in quant-ph

Abstract: The Variational Quantum Eigensolver (VQE) is a Variational Quantum Algorithm (VQA) to determine the ground state of quantum-mechanical systems. As a VQA, it makes use of a classical computer to optimize parameter values for its quantum circuit. However, each iteration of the VQE requires a multitude of measurements, and the optimization is subject to obstructions, such as barren plateaus, local minima, and subsequently slow convergence. We propose a warm-starting technique, that utilizes an approximation to generate beneficial initial parameter values for the VQE aiming to mitigate these effects. The warm-start is based on Approximate Complex Amplitude Encoding, a VQA using fidelity estimations from classical shadows to encode complex amplitude vectors into quantum states. Such warm-starts open the path to fruitful combinations of classical approximation algorithms and quantum algorithms. In particular, the evaluation of our approach shows that the warm-started VQE reaches higher quality solutions earlier than the original VQE.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics, vol. 21, no. 6/7, 1982.
  2. J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, 2018.
  3. J. Tilly et al., “The variational quantum eigensolver: A review of methods and best practices,” Physics Reports, vol. 986, 2022.
  4. A. Peruzzo et al., “A variational eigenvalue solver on a photonic quantum processor,” Nature communications, vol. 5, no. 1, 2014.
  5. F. Leymann and J. Barzen, “The bitter truth about gate-based quantum algorithms in the NISQ era,” Quantum Science and Technology, pp. 1–28, Sep. 2020. [Online]. Available: https://doi.org/10.1088/2058-9565/abae7d
  6. F. Truger et al., “Warm-Starting and Quantum Computing: A Systematic Mapping Study,” arXiv:2303.06133, 2023.
  7. D. J. Egger, J. Mareček, and S. Woerner, “Warm-starting quantum optimization,” Quantum, vol. 5, 2021.
  8. R. Tate, M. Farhadi, C. Herold, G. Mohler, and S. Gupta, “Bridging classical and quantum with sdp initialized warm-starts for qaoa,” ACM Transactions on Quantum Computing, vol. 4, no. 2, 2023.
  9. A. Galda, X. Liu, D. Lykov, Y. Alexeev, and I. Safro, “Transferability of optimal qaoa parameters between random graphs,” in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE).   IEEE, 2021.
  10. K. Mitarai, Y. Suzuki, W. Mizukami, Y. O. Nakagawa, and K. Fujii, “Quadratic clifford expansion for efficient benchmarking and initialization of variational quantum algorithms,” Physical Review Research, vol. 4, no. 3, 2022.
  11. S. H. Sack and M. Serbyn, “Quantum annealing initialization of the quantum approximate optimization algorithm,” quantum, vol. 5, 2021.
  12. R. Shaydulin, P. C. Lotshaw, J. Larson, J. Ostrowski, and T. S. Humble, “Parameter transfer for quantum approximate optimization of weighted maxcut,” ACM Transactions on Quantum Computing, vol. 4, no. 3, 2023.
  13. N. Mitsuda et al., “Approximate complex amplitude encoding algorithm and its application to data classification problems,” arXiv:2211.13039, 2022.
  14. H.-Y. Huang, R. Kueng, and J. Preskill, “Predicting many properties of a quantum system from very few measurements,” Nature Physics, vol. 16, no. 10, 2020.
  15. M. Cerezo et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, 2021.
  16. Y. Li, J. Hu, X.-M. Zhang, Z. Song, and M.-H. Yung, “Variational quantum simulation for quantum chemistry,” Advanced Theory and Simulations, vol. 2, no. 4, 2019.
  17. K. Head-Marsden, J. Flick, C. J. Ciccarino, and P. Narang, “Quantum information and algorithms for correlated quantum matter,” Chemical Reviews, vol. 121, no. 5, 2021.
  18. H. Mustafa, S. N. Morapakula, P. Jain, and S. Ganguly, “Variational quantum algorithms for chemical simulation and drug discovery,” in 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT), 2022.
  19. P. K. Barkoutsos et al., “Quantum algorithm for alchemical optimization in material design,” Chemical science, vol. 12, no. 12, 2021.
  20. D. E. Bernal et al., “Perspectives of quantum computing for chemical engineering,” AIChE Journal, vol. 68, no. 6, 2022.
  21. M. Weigold, J. Barzen, F. Leymann, and M. Salm, “Data Encoding Patterns For Quantum Algorithms,” in Proceedings of the 27th Conference on Pattern Languages of Programs (PLoP ’20).   HILLSIDE, 2020.
  22. V. Shende, S. Bullock, and I. Markov, “Synthesis of quantum-logic circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 6, 2006.
  23. K. Nakaji et al., “Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators,” Physical Review Research, vol. 4, no. 2, 2022.
  24. Z.-J. Zhang, T. H. Kyaw, J. S. Kottmann, M. Degroote, and A. Aspuru-Guzik, “Mutual information-assisted adaptive variational quantum eigensolver,” Quantum Science and Technology, vol. 6, no. 3, 2021.
  25. H. R. Grimsley, G. S. Barron, E. Barnes, S. E. Economou, and N. J. Mayhall, “Adaptive, problem-tailored variational quantum eigensolver mitigates rough parameter landscapes and barren plateaus,” npj Quantum Information, vol. 9, no. 1, 2023.
  26. G. Verdon et al., “Learning to learn with quantum neural networks via classical neural networks,” arXiv:1907.05415, 2019.
  27. M. Wilson et al., “Optimizing quantum heuristics with meta-learning,” Quantum Machine Intelligence, vol. 3, 2021.
  28. Z. Tao, J. Wu, Q. Xia, and Q. Li, “Laws: Look around and warm-start natural gradient descent for quantum neural networks,” in 2023 IEEE International Conference on Quantum Software (QSW).   IEEE, 2023.
  29. J. Dborin, F. Barratt, V. Wimalaweera, L. Wright, and A. G. Green, “Matrix product state pre-training for quantum machine learning,” Quantum Science and Technology, vol. 7, no. 3, 2022.
  30. M. S. Rudolph et al., “Synergy between quantum circuits and tensor networks: Short-cutting the race to practical quantum advantage,” arXiv:2208.13673, 2022.
  31. G. S. Ravi et al., “Cafqa: A classical simulation bootstrap for variational quantum algorithms,” in Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1, ser. ASPLOS 2023.   Association for Computing Machinery, 2022.
  32. A. Cervera-Lierta, J. S. Kottmann, and A. Aspuru-Guzik, “Meta-variational quantum eigensolver: Learning energy profiles of parameterized hamiltonians for quantum simulation,” PRX Quantum, vol. 2, no. 2, 2021.
  33. S. M. Harwood et al., “Improving the variational quantum eigensolver using variational adiabatic quantum computing,” ACM Transactions on Quantum Computing, vol. 3, no. 1, 2022.
  34. M. Skogh, O. Leinonen, P. Lolur, and M. Rahm, “Accelerating variational quantum eigensolver convergence using parameter transfer,” Electronic Structure, vol. 5, no. 3, 2023.
  35. S. Kanno and T. Tada, “Many-body calculations for periodic materials via restricted boltzmann machine-based vqe,” Quantum Science and Technology, vol. 6, no. 2, 2021.
  36. M. Beisel et al., “Quokka: A Service Ecosystem for Workflow-Based Execution of Variational Quantum Algorithms,” in Service-Oriented Computing – ICSOC 2022 Workshops.   Springer, 2023, Demonstration.
  37. H.-Y. Huang, R. Kueng, and J. Preskill, “Efficient estimation of pauli observables by derandomization,” Phys. Rev. Lett., vol. 127, 2021.
  38. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023.
  39. E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti, “An initialization strategy for addressing barren plateaus in parametrized quantum circuits,” Quantum, vol. 3, 2019.
  40. S. Gershgorin, “Über die Abgrenzung der Eigenwerte einer Matrix.” Bull. Acad. Sci. USSR, ser. VII, no. 6, 1931.
  41. L. Funcke, T. Hartung, K. Jansen, S. Kühn, and P. Stornati, “Dimensional expressivity analysis of parametric quantum circuits,” Quantum, vol. 5, 2021.
  42. S. Bravyi and D. Maslov, “Hadamard-free circuits expose the structure of the clifford group,” IEEE Transactions on Information Theory, vol. 67, no. 7, 2021.
  43. A. Pellow-Jarman, I. Sinayskiy, A. Pillay, and F. Petruccione, “A comparison of various classical optimizers for a variational quantum linear solver,” Quantum Information Processing, vol. 20, no. 6, 2021.
  44. F. Truger and J. Obst, “WS-VQE-prototype GitHub Repository,” 2024. [Online]. Available: https://github.com/UST-QuAntiL/WS-VQE-prototype
  45. V. Y. Pan and Z. Q. Chen, “The complexity of the matrix eigenproblem,” in Proceedings of the thirty-first annual ACM symposium on Theory of computing, 1999.
  46. F. L. Bauer and C. T. Fike, “Norms and exclusion theorems,” Numerische Mathematik, vol. 2, 1960.
  47. Y. Du, Z. Tu, X. Yuan, and D. Tao, “Efficient measure for the expressivity of variational quantum algorithms,” Phys. Rev. Lett., vol. 128, 2022.
  48. X. Lee, Y. Saito, D. Cai, and N. Asai, “Parameters fixing strategy for quantum approximate optimization algorithm,” in IEEE International Conference on Quantum Computing and Engineering (QCE), 2021.
  49. Q. Zhang, Q. Liu, and Y. Zhou, “Minimal clifford shadow estimation by mutually unbiased bases,” arXiv:2310.18749, 2023.
  50. F. Leymann et al., “Quantum in the Cloud: Application Potentials and Research Opportunities,” in Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020).   SciTePress, 2020.
  51. D. Vietz, J. Barzen, F. Leymann, B. Weder, and V. Yussupov, “An Exploratory Study on the Challenges of Engineering Quantum Applications in the Cloud,” in Proceedings of the 2nd Quantum Software Engineering and Technology Workshop (Q-SET 2021) co-located with IEEE International Conference on Quantum Computing and Engineering (QCE21).   CEUR Workshop Proceedings, 2021, workshop.
  52. D. Georg et al., “Execution Patterns for Quantum Applications,” in Proceedings of the 18th International Conference on Software Technologies - ICSOFT.   SciTePress, 2023.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube