Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time series generation for option pricing on quantum computers using tensor network (2402.17148v1)

Published 27 Feb 2024 in quant-ph, cs.LG, and q-fin.CP

Abstract: Finance, especially option pricing, is a promising industrial field that might benefit from quantum computing. While quantum algorithms for option pricing have been proposed, it is desired to devise more efficient implementations of costly operations in the algorithms, one of which is preparing a quantum state that encodes a probability distribution of the underlying asset price. In particular, in pricing a path-dependent option, we need to generate a state encoding a joint distribution of the underlying asset price at multiple time points, which is more demanding. To address these issues, we propose a novel approach using Matrix Product State (MPS) as a generative model for time series generation. To validate our approach, taking the Heston model as a target, we conduct numerical experiments to generate time series in the model. Our findings demonstrate the capability of the MPS model to generate paths in the Heston model, highlighting its potential for path-dependent option pricing on quantum computers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance: Overview and prospects,” Reviews in Physics, vol. 4, p. 100028, 2019.
  2. A. Bouland, W. van Dam, H. Joorati, I. Kerenidis, and A. Prakash, “Prospects and challenges of quantum finance,” arXiv preprint arXiv:2011.06492, 2020.
  3. D. J. Egger, C. Gambella, J. Marecek, S. McFaddin, M. Mevissen, R. Raymond, A. Simonetto, S. Woerner, and E. Yndurain, “Quantum computing for finance: State-of-the-art and future prospects,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–24, 2020.
  4. D. Herman, C. Googin, X. Liu, A. Galda, I. Safro, Y. Sun, M. Pistoia, and Y. Alexeev, “A survey of quantum computing for finance,” arXiv preprint arXiv:2201.02773, 2022.
  5. D. Herman, C. Googin, X. Liu, Y. Sun, A. Galda, I. Safro, M. Pistoia, and Y. Alexeev, “Quantum computing for finance,” Nature Reviews Physics, vol. 5, no. 8, pp. 450–465, 2023.
  6. A. Montanaro, “Quantum speedup of monte carlo methods,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 471, no. 2181, p. 20150301, 2015.
  7. G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and estimation,” Contemporary Mathematics, vol. 305, pp. 53–74, 2002.
  8. P. Rebentrost, B. Gupt, and T. R. Bromley, “Quantum computational finance: Monte carlo pricing of financial derivatives,” Physical Review A, vol. 98, no. 2, p. 022321, 2018.
  9. N. Stamatopoulos, D. J. Egger, Y. Sun, C. Zoufal, R. Iten, N. Shen, and S. Woerner, “Option pricing using quantum computers,” Quantum, vol. 4, p. 291, 2020.
  10. K. Kaneko, K. Miyamoto, N. Takeda, and K. Yoshino, “Quantum pricing with a smile: implementation of local volatility model on quantum computer,” EPJ Quantum Technology, vol. 9, pp. 1–32, 2022.
  11. L. Grover and T. Rudolph, “Creating superpositions that correspond to efficiently integrable probability distributions,” arXiv preprint quant-ph/0208112, 2002.
  12. E. Muñoz Coreas and H. Thapliyal, “Everything you always wanted to know about quantum circuits,” Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–17, 2022.
  13. Y. R. Sanders, G. H. Low, A. Scherer, and D. W. Berry, “Black-box quantum state preparation without arithmetic,” Phys. Rev. Lett., vol. 122, p. 020502, Jan 2019.
  14. S. Wang, Z. Wang, G. Cui, S. Shi, R. Shang, L. Fan, W. Li, Z. Wei, and Y. Gu, “Fast black-box quantum state preparation based on linear combination of unitaries,” Quantum Information Processing, vol. 20, no. 8, p. 270, 2021.
  15. J. Bausch, “Fast Black-Box Quantum State Preparation,” Quantum, vol. 6, p. 773, Aug. 2022.
  16. S. Wang, Z. Wang, R. He, S. Shi, G. Cui, R. Shang, J. Li, Y. Li, W. Li, Z. Wei, and Y. Gu, “Inverse-coefficient black-box quantum state preparation,” New Journal of Physics, vol. 24, p. 103004, oct 2022.
  17. S. McArdle, A. Gilyén, and M. Berta, “Quantum state preparation without coherent arithmetic,” arXiv preprint arXiv:2210.14892, 2022.
  18. A. G. Rattew and B. Koczor, “Preparing arbitrary continuous functions in quantum registers with logarithmic complexity,” arXiv preprint arXiv:2205.00519, 2022.
  19. G. Marin-Sanchez, J. Gonzalez-Conde, and M. Sanz, “Quantum algorithms for approximate function loading,” Phys. Rev. Res., vol. 5, p. 033114, Aug 2023.
  20. M. Moosa, T. W. Watts, Y. Chen, A. Sarma, and P. L. McMahon, “Linear-depth quantum circuits for loading fourier approximations of arbitrary functions,” Quantum Science and Technology, vol. 9, p. 015002, oct 2023.
  21. C. Zoufal, A. Lucchi, and S. Woerner, “Quantum generative adversarial networks for learning and loading random distributions,” npj Quantum Information, vol. 5, no. 1, p. 103, 2019.
  22. J. J. García-Ripoll, “Quantum-inspired algorithms for multivariate analysis: from interpolation to partial differential equations,” Quantum, vol. 5, p. 431, Apr. 2021.
  23. K. Endo, T. Nakamura, K. Fujii, and N. Yamamoto, “Quantum self-learning monte carlo and quantum-inspired fourier transform sampler,” Phys. Rev. Res., vol. 2, p. 043442, Dec 2020.
  24. A. Holmes and A. Y. Matsuura, “Efficient quantum circuits for accurate state preparation of smooth, differentiable functions,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 169–179, 2020.
  25. F. Fuchs and B. Horvath, “A hybrid quantum wasserstein gan with applications to option pricing,” Available at SSRN 4514510, 2023.
  26. A. Novikov, M. Trofimov, and I. Oseledets, “Exponential machines,” arXiv preprint arXiv:1605.03795, 2016.
  27. E. Stoudenmire and D. J. Schwab, “Supervised learning with tensor networks,” Advances in neural information processing systems, vol. 29, 2016.
  28. W. Huggins, P. Patil, B. Mitchell, K. B. Whaley, and E. M. Stoudenmire, “Towards quantum machine learning with tensor networks,” Quantum Science and technology, vol. 4, no. 2, p. 024001, 2019.
  29. Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, “Unsupervised generative modeling using matrix product states,” Physical Review X, vol. 8, no. 3, p. 031012, 2018.
  30. S. Cheng, L. Wang, T. Xiang, and P. Zhang, “Tree tensor networks for generative modeling,” Physical Review B, vol. 99, no. 15, p. 155131, 2019.
  31. J. Liu, S. Li, J. Zhang, and P. Zhang, “Tensor networks for unsupervised machine learning,” Physical Review E, vol. 107, no. 1, p. L012103, 2023.
  32. S.-J. Ran, “Encoding of matrix product states into quantum circuits of one-and two-qubit gates,” Physical Review A, vol. 101, no. 3, p. 032310, 2020.
  33. M. S. Rudolph, J. Miller, D. Motlagh, J. Chen, A. Acharya, and A. Perdomo-Ortiz, “Synergy between quantum circuits and tensor networks: Short-cutting the race to practical quantum advantage,” arXiv preprint arXiv:2208.13673, 2022.
  34. M. S. Rudolph, J. Chen, J. Miller, A. Acharya, and A. Perdomo-Ortiz, “Decomposition of matrix product states into shallow quantum circuits,” Quantum Science and Technology, vol. 9, no. 1, p. 015012, 2023.
  35. S. L. Heston, “A closed-form solution for options with stochastic volatility with applications to bond and currency options,” The review of financial studies, vol. 6, no. 2, pp. 327–343, 1993.
  36. Prentice Hall Englewood Cliffs, NJ, 1993.
  37. S. Shreve, Stochastic calculus for finance I: the binomial asset pricing model. Springer Science & Business Media, 2005.
  38. Springer, 2004.
  39. F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal of political economy, vol. 81, no. 3, pp. 637–654, 1973.
  40. R. C. Merton, “Theory of rational option pricing,” The Bell Journal of Economics and Management Science, vol. 4, no. 1, pp. 141–183, 1973.
  41. B. Dupire et al., “Pricing with a smile,” Risk, vol. 7, no. 1, pp. 18–20, 1994.
  42. J. C. Cox, J. E. Ingersoll Jr, and S. A. Ross, “A theory of the term structure of interest rates,” in Theory of valuation, pp. 129–164, World Scientific, 2005.
  43. G. Maruyama, “Continuous markov processes and stochastic equations,” Rend. Circ. Mat. Palermo, vol. 4, pp. 48–90, 1955.
  44. B. W. Silverman, Density estimation for statistics and data analysis. Routledge, 2018.
  45. J. C. Cox, “The constant elasticity of variance option pricing model,” Journal of Portfolio Management, p. 15, 1996.
  46. P. S. Hagan, D. Kumar, A. S. Lesniewski, and D. E. Woodward, “Managing smile risk,” Wilmott, vol. 1, pp. 84––108, 2002.

Summary

We haven't generated a summary for this paper yet.