Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Door and Drawer Reset Mechanisms: Automated Mechanisms for Testing and Data Collection (2402.16759v1)

Published 26 Feb 2024 in cs.RO

Abstract: Robotic manipulation in human environments is a challenging problem for researchers and industry alike. In particular, opening doors/drawers can be challenging for robots, as the size, shape, actuation and required force is variable. Because of this, it can be difficult to collect large real-world datasets and to benchmark different control algorithms on the same hardware. In this paper we present two automated testbeds, the Door Reset Mechanism (DORM) and Drawer Reset Mechanism (DWRM), for the purpose of real world testing and data collection. These devices are low-cost, are sensorized, operate with customized variable resistance, and come with open source software. Additionally, we provide a dataset of over 600 grasps using the DORM and DWRM. We use this dataset to highlight how much variability can exist even with the same trial on the same hardware. This data can also serve as a source for real-world noise in simulation environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. Y. Karayiannidis, C. Smith, F. E. V. Barrientos, P. Ögren, and D. Kragic, “An adaptive control approach for opening doors and drawers under uncertainties,” IEEE Transactions on Robotics, vol. 32, no. 1, pp. 161–175, 2016.
  2. L. Mochurad, Y. Hladun, Y. Zasoba, and M. Gregus, “An Approach for Opening Doors with a Mobile Robot Using Machine Learning Methods,” Big Data and Cognitive Computing, vol. 7, no. 2, p. 69, Apr. 2023. [Online]. Available: https://www.mdpi.com/2504-2289/7/2/69
  3. Y. Urakami, A. Hodgkinson, C. Carlin, R. Leu, L. Rigazio, and P. Abbeel, “DoorGym: A Scalable Door Opening Environment And Baseline Agent,” May 2022, arXiv:1908.01887 [cs]. [Online]. Available: http://arxiv.org/abs/1908.01887
  4. O. Kroemer, S. Niekum, and G. Konidaris, “A review of robot learning for manipulation: Challenges, representations, and algorithms,” J. Mach. Learn. Res., vol. 22, no. 1, jan 2021.
  5. W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep reinforcement learning for robotics: a survey,” in 2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020, pp. 737–744.
  6. H. R. Kam, S.-h. Lee, T. Park, and C.-h. Kim, “Rviz: a toolkit for real domain data visualization,” Telecommunication Systems, vol. 60, no. 2, pp. 337–345, 10 2015.
  7. S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The robot learning benchmark & learning environment,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3019–3026, 2020.
  8. Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, S. Nasiriany, and Y. Zhu, “robosuite: A Modular Simulation Framework and Benchmark for Robot Learning,” Nov. 2022, arXiv:2009.12293 [cs]. [Online]. Available: http://arxiv.org/abs/2009.12293
  9. Z. Ding, Y.-Y. Tsai, W. W. Lee, and B. Huang, “Sim-to-Real Transfer for Robotic Manipulation with Tactile Sensory,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2021, pp. 6778–6785, iSSN: 2153-0866.
  10. S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   Singapore, Singapore: IEEE, May 2017, pp. 3389–3396. [Online]. Available: http://ieeexplore.ieee.org/document/7989385/
  11. S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection,” CoRR, vol. abs/1603.02199, 2016.
  12. L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 3406–3413.
  13. K. DuFrene, K. Nave, J. Campbell, R. Balasubramanian, and C. Grimm, “The grasp reset mechanism: An automated apparatus for conducting grasping trials,” 2023. [Online]. Available: https://osurobotics.github.io/Physical-Robotic-Manipulation-Test-Facility/docs/Papers/grasp-reset-mechanism.html
  14. P. Schillinger, “Flexbe behavior engine.” [Online]. Available: http://philserver.bplaced.net/fbe/

Summary

We haven't generated a summary for this paper yet.