Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attached and separated rotating flow over a finite height ridge (2402.15615v1)

Published 23 Feb 2024 in physics.flu-dyn, cs.NA, and math.NA

Abstract: This paper discusses the effect of rotation on the boundary layer in high Reynolds number flow over a ridge using a numerical method based on stabilised finite elements that captures steady solutions up to Reynolds number of order $106$. The results are validated against boundary layer computations in shallow flows and for deep flows against experimental observations reported in Machicoane et al. (Phys. Rev. Fluids, 2018). In all cases considered the boundary layer remains attached, even at large Reynolds numbers, provided the Rossby number of the flow is sufficiently small. At any fixed Rossby number the flow detaches at sufficiently high Reynolds number to form a steady recirculating region in the lee of the ridge. At even higher Reynolds numbers no steady flow is found. This disappearance of steady solutions closely reproduces the transition to unsteadiness seen in the laboratory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. P. J. Mason and R. I. Sykes, Separation effects in Ekman layer flow over ridges,  Quart. J. Roy. Met. Soc. 105, 129 (1979).
  2. E. Johnson, The effects of obstacle shape and viscosity in deep rotating flow over finite-height topography, J Fluid Mech 120, 359 (1982).
  3. C. H. Williamson, Vortex dynamics in the cylinder wake, Ann. Rev. Fluid Mech. 28, 477 (1996).
  4. J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, in Comput Methods Appl Sci, edited by R. Glowinski and J. L. Lions (Springer,  1976) pp. 207–216.
  5. E. Burman and P. Hansbo, Edge stabilization for the generalized stokes problem: a continuous interior penalty method, Comput Methods Appl Mech Engrg 195, 2393 (2006).
  6. E. Burman, M. Fernández, and P. Hansbo, Continuous interior penalty finite element method for Oseen’s equations, SIAM J Numer Anal 44, 1248 (2006).
  7. G. G. Tong, D. Kamensky, and J. A. Evans, Skeleton-stabilized divergence-conforming b-spline discretizations for incompressible flow problems of high Reynolds number, Comput & Fluids 248, 105667 (2022).
  8. M. A. Fernández, Incremental displacement-correction schemes for incompressible fluid-structure interaction: stability and convergence analysis, Numer Math 123, 21 (2013).
  9. E. Burman, M. A. Fernández, and S. Frei, A Nitsche-based formulation for fluid-structure interactions with contact, ESAIM: M2AN 54, 531 (2020).
  10. S. Jacobs, On stratified flows over bottom topography, J Mar Res , 223 (1964).
  11. F. Hecht, New development in FreeFem++, J Numer Math 20, 251 (2013).
  12. U. Ayachit, The ParaView Guide: A Parallel Visualization Application (Kitware, Inc., USA, 2015).

Summary

We haven't generated a summary for this paper yet.