Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some results involving the $A_α$-eigenvalues for graphs and line graphs (2402.15470v1)

Published 23 Feb 2024 in cs.DM and math.CO

Abstract: Let $G$ be a simple graph with adjacency matrix $A(G)$, signless Laplacian matrix $Q(G)$, degree diagonal matrix $D(G)$ and let $l(G)$ be the line graph of $G$. In 2017, Nikiforov defined the $A_\alpha$-matrix of $G$, $A_\alpha(G)$, as a linear convex combination of $A(G)$ and $D(G)$, the following way, $A_\alpha(G):=\alpha A(G)+(1-\alpha)D(G),$ where $\alpha\in[0,1]$. In this paper, we present some bounds for the eigenvalues of $A_\alpha(G)$ and for the largest and smallest eigenvalues of $A_\alpha(l(G))$. Extremal graphs attaining some of these bounds are characterized.

Summary

We haven't generated a summary for this paper yet.