Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilinear matrix equation characterizes Laplacian and distance matrices of weighted trees (2008.06068v3)

Published 13 Aug 2020 in math.CO and cs.DM

Abstract: It is known from the algebraic graph theory that if $L$ is the Laplacian matrix of some tree $G$ with a vertex degree sequence $\mathbf{d}=(d_1, ..., d_n)\top$ and $D$ is its distance matrix, then $LD+2I=(2\cdot\mathbf{1}-\mathbf{d})\mathbf{1}\top$, where $\mathbf{1}$ is an all-ones column vector. We prove that if this matrix identity holds for the Laplacian matrix of some graph $G$ with a degree sequence $\mathbf{d}$ and for some matrix $D$, then $G$ is essentially a tree, and $D$ is its distance matrix. This result immediately generalizes to weighted graphs. If the matrix $D$ is symmetric, the lower triangular part of this matrix identity is redundant and can be omitted. Therefore, the above bilinear matrix equation in $L$, $D$, and $\mathbf{d}$ characterizes trees in terms of their Laplacian and distance matrices. Applications to the extremal graph theory (especially, to topological index optimization and to optimal tree problems) and to road topology design are discussed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.