Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Expectation Values of Conserved Charges in Integrable Quantum Field Theories out of Thermal Equilibrium (2402.14788v2)

Published 22 Feb 2024 in hep-th and cond-mat.stat-mech

Abstract: In this work we present a computation of the averages of conserved charge densities and currents of (1+1)-dimensional Integrable Quantum Field Theories in Generalised Gibbs Ensembles. Our approach is based on the quasi-particle description provided by the Thermodynamic Bethe Ansatz combined with the principles of Generalised Hydrodynamics, and we focus on Non-Equilibrium Steady State averages. When considering the ultraviolet (i.e. high temperature) limit of such averages, we recover the famous result by Bernard and Doyon (2012) for the energy current and density in Conformal Field Theories, and we extend it to conserved quantities with spin $s > 1$. We show that their averages are proportional to $T_L{s+1}\pm T_R{s+1}$, with $T_L$, $T_R$ the temperatures of two asymptotic thermal reservoirs. The same power law is obtained when considering some non-thermal generalised Gibbs states. In Conformal Field Theory, the power law is a consequence of the transformation properties of conserved charge operators, while the proportionality coefficient depends on the spin of the operator and on the central charge of the theory. We present an exact analytic expression for this coefficient in the case of a massive free fermion. At equilibrium, proportionality of spin-$s$ density averages to $T{s+1}$ can be thought of as a generalisation of Stefan-Boltzmann's law, which states that the energy per unit surface area radiated by a black body scales as $T4$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Toshiya Kinoshita, Trevor Wenger and David S Weiss “A quantum Newton’s cradle” In Nature 440.7086 Nature Publishing Group UK London, 2006, pp. 900–903 DOI: https://doi.org/10.1038/nature04693
  2. “Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons” In Phys. Rev. Lett. 98 American Physical Society, 2007, pp. 050405 DOI: 10.1103/PhysRevLett.98.050405
  3. Olalla A. Castro-Alvaredo, Benjamin Doyon and Takato Yoshimura “Emergent hydrodynamics in integrable quantum systems out of equilibrium” In Phys. Rev. X 6.4, 2016, pp. 041065 DOI: 10.1103/PhysRevX.6.041065
  4. “Transport in Out-of-Equilibrium X⁢X⁢Z𝑋𝑋𝑍XXZitalic_X italic_X italic_Z Chains: Exact Profiles of Charges and Currents” In Phys. Rev. Lett. 117 American Physical Society, 2016, pp. 207201 DOI: 10.1103/PhysRevLett.117.207201
  5. Benjamin Doyon “Lecture notes on Generalised Hydrodynamics” In SciPost Phys. Lect. Notes 18, 2020, pp. 1 DOI: 10.21468/SciPostPhysLectNotes.18
  6. Fabian H.L. Essler “A short introduction to Generalized Hydrodynamics” In Physica A: Statistical Mechanics and its Applications, 2022, pp. 127572 DOI: https://doi.org/10.1016/j.physa.2022.127572
  7. “Correlations after Quantum Quenches in the XXZ Spin Chain: Failure of the Generalized Gibbs Ensemble” In Phys. Rev. Lett. 113.11 American Physical Society (APS), 2014 DOI: 10.1103/physrevlett.113.117203
  8. Enej Ilievski, Marko Medenjak and T Prosen “Quasilocal Conserved Operators in the Isotropic Heisenberg Spin-1/2121/21 / 2 Chain” In Phys. Rev. Lett. 115 American Physical Society, 2015, pp. 120601 DOI: 10.1103/PhysRevLett.115.120601
  9. “Quasilocal charges in integrable lattice systems” In J. Stat. Mech. 2016.6 IOP Publishing, 2016, pp. 064008 DOI: 10.1088/1742-5468/2016/06/064008
  10. Eric Vernier and Axel Cortés Cubero “Quasilocal charges and progress towards the complete GGE for field theories with nondiagonal scattering” In J. Stat. Mech. 2017.2 IOP Publishing, 2017, pp. 023101 DOI: 10.1088/1742-5468/aa5288
  11. “Energy flow in non-equilibrium conformal field theory” In J. Phys. A 45.36 IOP Publishing, 2012, pp. 362001 DOI: 10.1088/1751-8113/45/36/362001
  12. “Non-Equilibrium Steady States in Conformal Field Theory” In Annales Henri Poincaré 16.1 Springer ScienceBusiness Media LLC, 2014, pp. 113–161 DOI: 10.1007/s00023-014-0314-8
  13. “Conformal field theory out of equilibrium: a review” In J. Stat. Mech. 2016.6 IOP Publishing, 2016, pp. 064005 DOI: 10.1088/1742-5468/2016/06/064005
  14. “Energy flow in quantum critical systems far from equilibrium” In Nature Physics 11.6, 2015, pp. 509–514 DOI: 10.1038/nphys3320
  15. C. Karrasch, R. Ilan and J.E. Moore “Nonequilibrium thermal transport and its relation to linear response” In Phys. Rev. B 88 American Physical Society, 2013, pp. 195129 DOI: 10.1103/PhysRevB.88.195129
  16. “Energy transport in Heisenberg chains beyond the Luttinger liquid paradigm” In Phys. Rev. B 90 American Physical Society, 2014, pp. 161101 DOI: 10.1103/PhysRevB.90.161101
  17. “Energy transport between two integrable spin chains” In Phys. Rev. B 93 American Physical Society, 2016, pp. 205121 DOI: 10.1103/PhysRevB.93.205121
  18. “Nonequilibrium thermal transport in the quantum Ising chain” In Phys. Rev. B 88 American Physical Society, 2013, pp. 134301 DOI: 10.1103/PhysRevB.88.134301
  19. Márton Kormos “Inhomogeneous quenches in the transverse field Ising chain: scaling and front dynamics” In SciPost Phys. 3 SciPost, 2017, pp. 020 DOI: 10.21468/SciPostPhys.3.3.020
  20. “Ballistic front dynamics after joining two semi-infinite quantum Ising chains” In Phys. Rev. E 96 American Physical Society, 2017, pp. 012138 DOI: 10.1103/PhysRevE.96.012138
  21. Bruno Bertini, Lorenzo Piroli and Pasquale Calabrese “Universal Broadening of the Light Cone in Low-Temperature Transport” In Phys. Rev. Lett. 120.17, 2018, pp. 176801 DOI: 10.1103/PhysRevLett.120.176801
  22. “Low-temperature transport in out-of-equilibrium XXZ chains” In J. Stat. Mech. 1803.3, 2018, pp. 033104 DOI: 10.1088/1742-5468/aab04b
  23. “Quantum Quenches in Integrable Field Theories” In New J. Phys. 12, 2010, pp. 055015 DOI: 10.1088/1367-2630/12/5/055015
  24. “Generalized TBA and generalized Gibbs” In J. Phys. A 45, 2012, pp. 255001 DOI: 10.1088/1751-8113/45/25/255001
  25. Al.B. Zamolodchikov “Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee-Yang models” In Nucl. Phys. B342, 1990, pp. 695–720 DOI: 10.1016/0550-3213(90)90333-9
  26. Timothy R Klassen and Ezer Melzer “Purely elastic scattering theories and their ultraviolet limits” In Nuclear Physics B 338.3 Elsevier, 1990, pp. 485–528
  27. “The Thermodynamics of purely elastic scattering theories and conformal perturbation theory” In Nucl. Phys. B350, 1991, pp. 635–689 DOI: 10.1016/0550-3213(90)90643-R
  28. A.B. Zamolodchikov “Integrable field theory from conformal field theory” In Adv. Stud. Pure Math. 19, 1989, pp. 641–674
  29. Vladimir V. Bazhanov, Sergei L. Lukyanov and Alexander B. Zamolodchikov “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz” In Commun. Math. Phys. 177, 1996, pp. 381–398 DOI: 10.1007/BF02101898
  30. A.B. Zamolodchikov “From tricritical Ising to critical Ising by thermodynamic Bethe ansatz” In Nucl. Phys. B 358, 1991, pp. 524–546 DOI: 10.1016/0550-3213(91)90423-U
  31. “The staircase model: massless flows and hydrodynamics” In J. Phys. A 54.40, 2021, pp. 404005 DOI: 10.1088/1751-8121/ac2141
  32. Al B Zamolodchikov “Resonance factorized scattering and roaming trajectories” In J. Phys. A 39.41 IOP Publishing, 2006, pp. 12847 DOI: 10.1088/0305-4470/39/41/S08
  33. H.W.J. Bloete, John L. Cardy and M.P. Nightingale “Conformal Invariance, the Central Charge, and Universal Finite Size Amplitudes at Criticality” In Phys. Rev. Lett. 56, 1986, pp. 742–745 DOI: 10.1103/PhysRevLett.56.742
  34. Ian Affleck “Universal Term in the Free Energy at a Critical Point and the Conformal Anomaly” In Phys. Rev. Lett. 56, 1986, pp. 746–748 DOI: 10.1103/PhysRevLett.56.746
  35. John Cardy “The ubiquitous ‘c’: from the Stefan–Boltzmann law to quantum information” In J. Stat. Mech. 2010.10 IOP Publishing, 2010, pp. P10004 DOI: 10.1088/1742-5468/2010/10/p10004
  36. “A note on generalized hydrodynamics: inhomogeneous fields and other concepts” In SciPost Phys. 2.2, 2017, pp. 014 DOI: 10.21468/SciPostPhys.2.2.014
  37. “Collision rate ansatz for quantum integrable systems” In SciPost Phys. 9.3, 2020, pp. 040 DOI: 10.21468/SciPostPhys.9.3.040
  38. Márton Borsi, Balázs Pozsgay and Levente Pristyák “Current operators in Bethe ansatz and generalized hydrodynamics: An exact quantum-classical correspondence” In Phys. Rev. X 10.1 APS, 2020, pp. 011054 DOI: 10.1103/physrevx.10.011054
  39. M.árton Borsi, Balázs Pozsgay and Levente Pristyák “Current operators in integrable models: a review” In J. Stat. Mech. 2109, 2021, pp. 094001 DOI: 10.1088/1742-5468/ac0f6b
  40. “Exact finite volume expectation values of conserved currents” In Phys. Lett. B 805, 2020, pp. 135446 DOI: 10.1016/j.physletb.2020.135446
  41. Alexei B. Zamolodchikov “On the thermodynamic Bethe ansatz equation in sinh-Gordon model” In J. Phys. A 39, 2006, pp. 12863–12887 DOI: 10.1088/0305-4470/39/41/S09
  42. John L. Cardy and G. Mussardo “S Matrix of the Yang-Lee Edge Singularity in Two-Dimensions” In Phys. Lett. B 225, 1989, pp. 275–278 DOI: 10.1016/0370-2693(89)90818-6
  43. “Transport fluctuations in integrable models out of equilibrium” In SciPost Physics 8.1 Stichting SciPost, 2020 DOI: 10.21468/scipostphys.8.1.007
  44. Alexander B. Zamolodchikov “Expectation value of composite field T anti-T in two-dimensional quantum field theory”, 2004 arXiv:hep-th/0401146
  45. “On space of integrable quantum field theories” In Nucl. Phys. B 915, 2017, pp. 363–383 DOI: 10.1016/j.nuclphysb.2016.12.014
  46. “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories” In JHEP 10, 2016, pp. 112 DOI: 10.1007/JHEP10(2016)112
  47. Marko Medenjak, Giuseppe Policastro and Takato Yoshimura “Thermal transport in T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed conformal field theories: From integrability to holography” In Phys. Rev. D 103.6, 2021, pp. 066012 DOI: 10.1103/PhysRevD.103.066012
  48. Marko Medenjak, Giuseppe Policastro and Takato Yoshimura “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-Deformed Conformal Field Theories out of Equilibrium” In Phys. Rev. Lett. 126.12, 2021, pp. 121601 DOI: 10.1103/PhysRevLett.126.121601
  49. Riccardo Travaglino, Michele Mazzoni and Olalla A. Castro-Alvaredo “Generalised Hydrodynamics of T⁢T¯T¯T\mathrm{T\bar{T}}roman_T over¯ start_ARG roman_T end_ARG-Deformed Integrable Quantum Field Theories” In To appear soon
  50. Al B Zamolodchikov “On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories” In Physics Letters B 253.3-4 North-Holland, 1991, pp. 391–394
  51. F. Ravanini, A. Valleriani and R. Tateo “Dynkin TBA’s” In Int. J. Mod. Phys. A 08.10, 1993, pp. 1707–1727 DOI: 10.1142/S0217751X93000709
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube