Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Constraining spherically symmetric metrics by the gap between photon rings (2402.14733v2)

Published 22 Feb 2024 in gr-qc and astro-ph.CO

Abstract: Gravitational lensing of luminous matter that surrounds a black hole or some other sufficiently compact object produces an infinite sequence of images. Besides the direct (or primary) image, it comprises demagnified and deformed replicas of the original known as photon rings which are progressively nearing the boundary of the socalled shadow. In the present paper, we present analytical approximation formulas for higher-order photon rings for an asymptotically flat, static, spherically symmetric spacetime that admits a photon sphere. We consider a geometrically thin disk of light sources in the equatorial plane and an observer at arbitrary inclination far away from the center. Fixing the emission radius and leveraging the strong deflection limit, which provides an analytical logarithmic approximation for the deflection angle, we find the deformed shape of higher-order photon rings in the form of a polar equation on the observer's screen. It has been suggested by other authors to use the relative size of photon rings for characterizing the underlying spacetime. In particular, the relative separation between two neighboring photon rings, which we call "gap parameter", was considered. We analytically calculate the gap parameter of higher-order photon rings for metrics of the considered class that may depend on multiple parameters. The advantage of using this quantity is in the fact that, to within the assumed approximations, it is independent of the mass of the central object (or of some other characteristic parameter if the mass is zero) and of the distance of the observer. Measurements of the gap parameter, which may become possible in the near future, will restrict the spacetime models that are in agreement with the observations. Even without knowing the inner and outer radii of the shining disk, it will conclusively rule out some metrics. Some examples are provided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. G. S. Bisnovatyi-Kogan and O. Y. Tsupko, Analytical study of higher-order ring images of the accretion disk around a black hole, Physical Review D 105, 064040 (2022).
  2. H. C. Ohanian, The black hole as a gravitational “lens”, American Journal of Physics 55, 428 (1987).
  3. K. S. Virbhadra and G. F. R. Ellis, Schwarzschild black hole lensing, Physical Review D 62, 084003 (2000).
  4. V. Bozza, Gravitational lensing in the strong field limit, Physical Review D 66, 103001 (2002).
  5. G. S. Bisnovatyi-Kogan and O. Y. Tsupko, Strong gravitational lensing by Schwarzschild black holes, Astrophysics 51, 99 (2008).
  6. O. Chwolson, Über eine mögliche Form fiktiver Doppelsterne, Astronomische Nachrichten 221, 329 (1924).
  7. H. Falcke, F. Melia, and E. Agol, Viewing the shadow of the black hole at the galactic center, The Astrophysical Journal Letters 528, L13 (2000).
  8. T. Bronzwaer and H. Falcke, The nature of black hole shadows, The Astrophysical Journal 920, 155 (2021).
  9. V. Perlick and O. Y. Tsupko, Calculating black hole shadows: Review of analytical studies, Physics Reports 947, 1 (2022).
  10. P. V. P. Cunha and C. A. R. Herdeiro, Shadows and strong gravitational lensing: a brief review, General Relativity and Gravitation 50, 42 (2018).
  11. D. Hilbert, Die Grundlagen der Physik. (Zweite Mitteilung), Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1917, 53 (1917).
  12. C. Darwin, The gravity field of a particle, Proceedings of the Royal Society of London, Series A 249, 180 (1959).
  13. Y. Zeldovich and I. Novikov, Relativistic astrophysics. II, Soviet Physics Uspekhi 8, 522 (1966), Russian original: Uspekhi Fizicheskikh Nauk 86, 447 (1965).
  14. J. L. Synge, The escape of photons from gravitationally intense stars, Monthly Notices of the Royal Astronomical Society 431, 463 (1966).
  15. J. P. Luminet, Image of a spherical black hole with thin accretion disk, Astronomy and Astrophysics 75, 228 (1979).
  16. G. Bao, P. Hadrava, and E. Østgaard, Multiple images and light curves of an emitting source on a relativistic eccentric orbit around a black hole, The Astrophysical Journal 425, 63 (1994a).
  17. G. Bao, P. Hadrava, and E. Østgaard, Emission-line profiles from a relativistic accretion disk and the role of its multiple images, The Astrophysical Journal 435, 55 (1994b).
  18. R. d. Atkinson, On light tracks near a very massive star, Astronomical Journal 70, 517 (1965).
  19. V. Perlick, Exact gravitational lens equation in spherically symmetric and static spacetimes, Physical Review D 69, 064017 (2004a).
  20. E. F. Eiroa, G. E. Romero, and D. F. Torres, Reissner-Nordström black hole lensing, Physical Review D 66, 024010 (2002).
  21. V. Perlick, Gravitational lensing from a spacetime perspective, Living Reviews in Relativity 7, 9 (2004b).
  22. S. E. Gralla and A. Lupsasca, Observable shape of black hole photon rings, Physical Review D 102, 124003 (2020).
  23. S. E. Gralla, A. Lupsasca, and D. P. Marrone, The shape of the black hole photon ring: A precise test of strong-field general relativity, Physical Review D 102, 124004 (2020).
  24. A. Deich, N. Yunes, and C. Gammie, Lyapunov exponents to test general relativity, arXiv e-prints , arXiv:2308.07232 (2023).
  25. M. Wielgus, Photon rings of spherically symmetric black holes and robust tests of non-Kerr metrics, Physical Review D 104, 124058 (2021).
  26. A. E. Broderick, K. Salehi, and B. Georgiev, Shadow implications: What does measuring the photon ring imply for gravity?, The Astrophysical Journal 958, 114 (2023).
  27. E. F. Eiroa and D. F. Torres, Strong field limit analysis of gravitational retrolensing, Physical Review D 69, 063004 (2004).
  28. E. F. Eiroa, Braneworld black hole gravitational lens: Strong field limit analysis, Physical Review D 71, 083010 (2005).
  29. G. N. Gyulchev and S. S. Yazadjiev, Kerr-Sen dilaton-axion black hole lensing in the strong deflection limit, Physical Review D 75, 023006 (2007).
  30. O. Y. Tsupko, Unbound motion of massive particles in the Schwarzschild metric: Analytical description in case of strong deflection, Physical Review D 89, 084075 (2014).
  31. N. Tsukamoto, Strong deflection limit analysis and gravitational lensing of an Ellis wormhole, Physical Review D 94, 124001 (2016).
  32. N. Tsukamoto, Gravitational lensing in the Simpson-Visser black-bounce spacetime in a strong deflection limit, Physical Review D 103, 024033 (2021).
  33. O. Y. Tsupko and G. S. Bisnovatyi-Kogan, Gravitational lensing in plasma: Relativistic images at homogeneous plasma, Physical Review D 87, 124009 (2013).
  34. G. S. Bisnovatyi-Kogan and O. Y. Tsupko, Gravitational lensing in presence of plasma: Strong lens systems, black hole lensing and shadow, Universe 3, 57 (2017).
  35. V. Bozza, Quasiequatorial gravitational lensing by spinning black holes in the strong field limit, Physical Review D 67, 103006 (2003).
  36. V. Bozza, F. D. Luca, and G. Scarpetta, Kerr black hole lensing for generic observers in the strong deflection limit, Physical Review D 74, 063001 (2006).
  37. V. Bozza and M. Sereno, Weakly perturbed Schwarzschild lens in the strong deflection limit, Physical Review D 73, 103004 (2006).
  38. V. Bozza and G. Scarpetta, Strong deflection limit of black hole gravitational lensing with arbitrary source distances, Physical Review D 76, 083008 (2007).
  39. V. Bozza, Gravitational lensing by black holes, General Relativity and Gravitation 42, 2269 (2010).
  40. G. F. Aldi and V. Bozza, Relativistic iron lines in accretion disks: the contribution of higher order images in the strong deflection limit, Journal of Cosmology and Astroparticle Physics 2017 (2), 033.
  41. F. Aratore and V. Bozza, Decoding a black hole metric from the interferometric pattern of the relativistic images of a compact source, Journal of Cosmology and Astroparticle Physics 2021 (10), 054.
  42. O. Y. Tsupko, Shape of higher-order images of equatorial emission rings around a Schwarzschild black hole: Analytical description with polar curves, Physical Review D 106, 064033 (2022).
  43. A. Eichhorn, A. Held, and P.-V. Johannsen, Universal signatures of singularity-resolving physics in photon rings of black holes and horizonless objects, Journal of Cosmology and Astroparticle Physics 2023 (1), 043.
  44. D. Ayzenberg, Testing gravity with black hole shadow subrings, Classical and Quantum Gravity 39, 105009 (2022).
  45. K. S. Virbhadra and G. F. Ellis, Gravitational lensing by naked singularities, Physical Review D 65, 103004 (2002).
  46. C.-M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, The geometry of photon surfaces, Journal of Mathematical Physics 42, 818 (2001).
  47. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983).
  48. A. F. Zakharov, Particle capture cross sections for a Reissner–Nordström black hole, Classical and Quantum Gravity 11, 1027 (1994).
  49. A. F. Zakharov, Constraints on a charge in the Reissner-Nordström metric for the black hole at the Galactic Center, Phys. Rev. D 90, 062007 (2014).
  50. B. Carter, Global structure of the Kerr family of gravitational fields, Physical Review 174, 1559 (1968).
  51. A. I. Janis, E. T. Newman, and J. Winicour, Reality of the Schwarzschild singularity, Physical Review Letters 20, 878 (1968).
  52. M. Wyman, Static spherically symmetric scalar fields in general relativity, Physical Review D 24, 839 (1981).
  53. K. S. Virbhadra, Janis-Newman-Winicour and Wyman solutions are the same, International Journal of Modern Physics A 12, 4831 (1997).
  54. I. Fisher, Scalar mesostatic field with regard for gravitational effects, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 18, 636 (1948), for an English translation see arXiv:gr-qc/9911008.
  55. K. S. Virbhadra, S. Jhingan, and P. S. Joshi, Nature of singularity in Einstein-massless scalar theory, International Journal of Modern Physics D 6, 357 (1997).
  56. H. G. Ellis, Ether flow through a drainhole: A particle model in general relativity, Journal of Mathematical Physics 14, 104 (1973).
  57. M. S. Morris and K. S. Thorne, Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity, American Journal of Physics 56, 395 (1988).
  58. M. Mars, C. F. Paganini, and M. A. Oancea, The fingerprints of black holes—shadows and their degeneracies, Classical and Quantum Gravity 35, 025005 (2018).
  59. S. A. Kaplan, On circular orbits in Einstein’s theory of gravitation, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 19, 951 (1949), English translation: arXiv preprint arXiv:2201.07971.
  60. A. Armenti, Existence and stability criteria for circular geodesics in the vicinity of a Reissner-Nordström black hole, Nuovo Cimento B 25, 442 (1975).
  61. N. Dadhich and P. Kale, Timelike and null geodesics in the Nordström field, Pramana 9, 71 (1977).
  62. O. Y. Tsupko, Z. Fan, and G. S. Bisnovatyi-Kogan, Black hole shadow as a standard ruler in cosmology, Classical and Quantum Gravity 37, 065016 (2020).
  63. J.-Z. Qi and X. Zhang, A new cosmological probe using super-massive black hole shadows, Chinese Physics C 44, 055101 (2020).
  64. S. Vagnozzi, C. Bambi, and L. Visinelli, Concerns regarding the use of black hole shadows as standard rulers, Classical and Quantum Gravity 37, 087001 (2020).
  65. T. M. Eubanks, Anchored in shadows: Tying the celestial reference frame directly to black hole event horizons, in 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) (2021) pp. 1–4, arXiv:2005.09122.
  66. F. Renzi and M. Martinelli, Climbing out of the shadows: Building the distance ladder with black hole images, Physics of the Dark Universe 37, 101104 (2022).
  67. C. Escamilla-Rivera and R. Torres Castillejos, H00{}_{0}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT Tension on the Light of Supermassive Black Hole Shadows Data, Universe 9, 14 (2022).
  68. J. L. Cervantes-Cota, S. Galindo-Uribarri, and G. F. Smoot, The unsettled number: Hubble’s tension, Universe 9, 501 (2023).
Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.